Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский химико-технологический университет имени Д.И. Менделеева»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Оборудование для реализации технологии художественной обработки материалов»

Направление подготовки 29.03.04 «Технология художественной обработки материалов»

Профиль подготовки – «Технология художественной обработки материалов» (для иностранных обучающихся)

Квалификация «<u>бакалавр</u>»

РАССМОТРЕНО И ОДОБРЕНО

на заседании Методической комиссии РХТУ им. Д.И. Менделеева «<u>25</u>» мая 2021 г.

Председатель Н.А. Макаров

Москва 2021

Программа составлена кафедрами:

- 1. химической технологии керамики и огнеупоров проф. Беляков А.В.
- 2. химической технологии стекла и ситаллов доц. Спиридонов Ю.А.

Учебная программа рассмотрена и одобрена на заседании XTКиО «31» августа 2021 г., протокол № 1.

1. ЦЕЛЬ И ЗАДАЧИ ДИСЦИПЛИНЫ

Программа составлена в соответствии с требованиями федерального государственного образовательного стандарта высшего профессионального образования (ФГОС ВО) по направлению подготовки 29.03.04 «Технология художественной обработки материалов» (квалификация – бакалавр), профиль «Технология художественной обработки материалов» с учетом рекомендаций методической комиссии Ученого совета РХТУ. Программа рассчитана на изучение курса в течение одного семестра.

Целью дисциплины «Оборудование для реализации технологии художественной обработки материалов (Оборудование для реализации ТХОМ)»

является приобретение студентами углубленных знаний по профилю «Технология художественной обработки материалов» для последующей производственно-технологической, научно-исследовательской, организационно-управленческой и проектной деятельности в области изделий из керамики, стекла, вяжущих материалов.

Задачами дисциплины являются изучение конструкции и функционирования основного технологического оборудования для производства керамики, стекла, вяжущих материалов, методов выбора оборудования для осуществления конкретных технологических процессов с учетом свойств перерабатываемого материала.

Цель и задачи курса достигаются с помощью:

- 1. изучения принципов работы, особенностей функционирования и эксплуатации оборудования для производства керамики, стекла, вяжущих материалов и изделий на их основе;
- 2. ознакомления с взаимодействием отдельных видов оборудования в поточных технологических линиях.

Дисциплина «Оборудование для реализации ТХОМ» преподается в 5 семестре обучения в бакалавриате. Контроль успеваемости студентов ведется по принятой в РХТУ им. Д.И. Менделеева рейтинговой системе.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Изучение дисциплины «Оборудование для реализации ТХОМ» при подготовке бакалавров по направлению подготовки 29.03.04 «Технология художественной обработки материалов», профиль подготовки – «Технология художественной обработки материалов», направлено на приобретение следующих универсальных компетенций и индикаторов их достижения:

ОПК-3.2, ОПК-5.1;

Профессиональные компетенции и индикаторы их достижения:

ОПК-3. Способен проводить измерения параметров	ОПК-3.2 Умеет анализировать, сопоставлять и описывать полученные результаты
структуры, свойств художественных материалов,	ОПК-3.3 Владеет методиками определения состава, свойств и параметров структуры материалов - методами оценки свойств, характеристик и параметров
художественно-промышленных объектов и технологических процессов их изготовления.	художественно-промышленных изделий;
ОПК-5. Способен реализовывать технические решения в профессиональной деятельности, выбирать эффективные и безопасные технические средства и	ОПК-5.2 Знает характер воздействия вредных и опасных факторов на человека и природную среду, методы защиты от них применительно к сфере своей профессиональной деятельности ОПК-5.4 Владеет методами оценки уровня эффективности и безопасности применяемых технических средств и технологий
технологии. ОПК-6. Способен использовать техническую документацию в процессе производства художественных материалов, создании и реставрации художественно-промышленных объектов и их реставрации.	ОПК-6.1 Знает основы технологии художественных и художественно-промышленных изделий и способы их реставрации ОПК-6.2 Умеет работать с техническими и нормативными документами
ОПК-7. Способен применять методы оптимизации технологических процессов производства художественных материалов и художественнопромышленных объектов с учетом требования потребителя.	ОПК-7.3 Владеет методикой оптимизации технологии изготовления художественных и художественно-промышленных материалов и изделий

В результате изучения дисциплины студент бакалавриата должен:

Знать:

- классификацию основных видов оборудования для реализации ТХОМ;
- принципы работы, достоинства и недостатки основных типов оборудования для промышленного и индивидуального производства художественных изделий из стекла, керамики и вяжущих материалов;
- основные виды печного оборудования для производства изделий из стекла, керамики и вяжущих материалов;
- основы компоновочных решений технологического оборудования и механизации транспортных операций по цехам и участкам всего производства.

Уметь:

• определять оборудование, оснастку и инструмент, необходимые для проведения технологических процессов, как в промышленном масштабе, так и на индивидуальном уровне при производстве художественных изделий из стекла, керамики и вяжущих материалов

Владеть:

• методами сбора и обработки информации об основном оборудовании, обеспечивающем высокое качество художественных изделий из стекла, керамики и вяжущих материалов, повышении производительности труда и культуры производства, уменьшении загрязнения окружающей среды, о тенденциях совершенствования оборудования.

Дисциплина базируется на знаниях и умениях, полученных при изучении предметов «Технология обработки материалов», «Оборудование для реализации ТХОМ».

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Академические часы.

Виды учебной работы	В	В академ.
	зачетных	часах
	единицах	
Общая трудоемкость дисциплины по	2,0	72
учебному плану		
Контактные занятия	1,3	48
Аудиторные занятия:	1,3	48
Лекции (Л)	0,9	32
Практические занятия (ПЗ)	0,4	16
Самостоятельная работа (СР):	0,7	24
Контактная работа – промежуточная аттестация	-	0,4
Самостоятельное изучение Разделов дисциплины	0,69	23,6
Виды контроля:	•	•
Вид итогового контроля: Зачёт с оценкой		

Астрономические часы.

Виды учебной работы	В	В астрон.
	зачетных	часах
	единицах	
Общая трудоемкость дисциплины по	2,0	54
учебному плану		
Контактные занятия	1,3	36
Аудиторные занятия:	1,3	36
Лекции (Л)	0,9	24
Практические занятия (ПЗ)	0,4	12
Самостоятельная работа (СР):	0,7	18
Контактная работа – промежуточная аттестация	-	-0,3
Самостоятельное изучение Разделов дисциплины	0,69	17,7
Виды контроля:	_	
Вид итогового контроля: Зачёт с оценкой		

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Разделы дисциплины и виды занятий

No	Разнан нисимплими		ъем	часов	,
п/п	Раздел дисциплины	Всего	Л	ПЗ	CP
	Раздел 1. Введение. Оборудование для измельчения и				
1.	смешивания. Оборудование для получения изделий	19	8	4	7
	из вяжущих материалов.				
1.1.	Классификация дробильно-помольных машин	4	2		2
1.2.	Оборудование для измельчения материалов	7	3	2	2
1.3.	Физико-химические основы измельчения материалов	6	2	2	2
1.4.	Производство гипсовых вяжущих	2	1	0	1
	Раздел 2. Оборудование для подготовки				
2	формовочных масс и формования заготовок в	34	16	8	10
	производстве керамики. Основы проектирования.				
	Специфическое оборудование для подготовки				
2.1	формовочных масс, оборудование для изготовления	17	8	4	5
	изделий способом пластического формования.				
	Оборудование для прессования изделий из				
2.2	порошкообразных масс, литья керамических изделий,	17	8	4	5
2.2	формования методом обточки, глазурования и нанесения	17	0	7	
	рисунка. Основы проектирования.				
	Раздел 3. Оборудование и технологии для				
3	производства изделий из стекла и механической	19	8	4	7
	обработки силикатных материалов.				
3.1.	Теоретическое и технологическое обоснование				
	химических составов стекол, применяемых в настоящее	4	2	0	2
	время				
3.2.	Виды стекловаренных печей	4	2	0	2
3.3.	Современные методы формования штучных изделий из	5	2	2	1
	стекла.				_
3.4.	Виды механической обработки	6	2	2	2
	ИТОГО	72	32	16	24

4.2. Содержание разделов дисциплины

Раздел 1. Введение. Оборудование для измельчения и смешивания. Оборудование для получения изделий из вяжущих материалов

Введение. Содержание курса и его задачи. Общие сведения о процессах измельчения. Основные свойства измельчаемых материалов. Способы измельчения и характеристики качества измельчения материала.

Классификация дробильно-помольных машин. Щековая дробилка с простым и сложным движением щеки: устройство, принцип работы, назначение. Короткоконусные и длинноконусные дробилки: устройство, принцип работы, назначение, общие и отличительные особенности работы. Валковые дробилки: устройство, принцип работы, назначение. Дробилки ударного действия. Молотковые дробилки: устройство, принцип работы, назначение. Дробилки ударного действия. Ударно-отражательные дробилки: устройство, принцип работы, назначение.

Оборудование для измельчения материалов. Дезинтеграторы: устройство, принцип работы, назначение. Шаровая мельница: характеристика, конструктивные особенности,

области применения. Факторы, влияющие на производительность мельницы. Организация замкнутого цикла работы мельниц, его преимущества. Вертикальные среднеходные мельницы: устройство, принцип работы, назначение. Вибромельницы периодического и непрерывного действия: устройство, принцип работы, назначение. Мельницы «Аэрофол» и «Гидрофол»: устройство, принцип работы, назначение. Мельница «HOROMIL»: устройство, принцип работы, назначение. Устройство, принцип работы, назначение. Глиноболтушка. Стержневая мельница: устройство, принцип работы, назначение.

Физико-химические основы измельчения материалов. Интенсификаторы помола. Классификация материалов. Оборудование, применяемое для классификации материалов. Разделение частиц в воздушном потоке. Статический, динамический и центробежный сепаратор.

Производство гипсовых вяжущих. Основные технологические стадии, применяемое оборудование. Производство портландцемента мокрым способом. Основные технологические операции, применяемое оборудование.

Раздел 2. Оборудование для подготовки формовочных масс и для формования заготовок в производстве керамики. Основы проектирования

- 2.1. Оборудование для подготовки формовочных масс, для пластического формования заготовок. Особенности работы оборудования для тонкого и сверхтонкого измельчения. Оборудование для измельчения пластичных материалов. Устройства для выделения тонких порошков из воздушного потока и обеспыливания воздуха. Аппараты для мокрого пылеулавливания и их особенности. Лопастные смесители с пароувлажнением. Глинорастиратели И глинозапасники. Распылительные сушилки. Оборудование для обезвоживания шликеров и гранулирования. Основные варианты процессов пластического формования: протяжка, штемпельное формование, раскатка в тела вращения. Ленточные прессы. Вакуумные ленточные прессы. Вакууммялки. Требования, предъявляемые к машинам для нарезки сырца (заготовок) из бруса, выдавливаемого ленточным прессом. Формование тонкостенных полых и плоских изделий (хозяйственный фарфор, фаянс) раскаткой на ручных и механизированных станках. Формование роликовыми шаблонами. Основные типы прессов, применяемых для допрессовки керамических изделий, формования черепицы. Тенденции совершенствовании оборудования для формования методами пластического формования.
- Оборудование для формования заготовок методами полусухого прессования, литья из шликеров, обточки; глазурования и нанесения рисунка. Основы проектирования промышленных предприятий. Требования к формовочным массам для полусухого прессования. Классификация прессов по источникам создания прессующего усилия, по типам прессующих и перемещающих механизмов, по режимам прессования. Револьверные и роторные прессы. Принцип работы коленорычажных прессов и прессов с гидравлическим регулированием давления. Принцип работы гидравлических прессов. Принцип работы фрикционных прессов. Методы прессования изделий сложной формы. Принципы вибропрессования, квазиизостатического гидростатического И прессования. газостатического прессование. Тенденции совершенствования оборудования прессования керамических изделий. Особенности процесса литья керамических шликеров в пористые формы. Требования к шликерам и пористым формам. Классификация методов литья, применяемых в керамической технологии. Оборудование литейных цехов для производства санитарно-строительной керамики. Мешалки, насосы, шликеропроводы, устройства для вакуумирования шликеров. Переход от литейных конвейеров к механизированным литейным стендам. Принципы горячего литья изделий из термопластичных шликеров. Типичные конструкции литейных машин. Тенденции совершенствования оборудования для литья керамических изделий. Оборудование для обработки резанием (обточки) керамических заготовок. Мокрый и сухой способы

глазурования. Оборудование для глазурования изделий методами окунания, полива, пульверизации, электростатическим, одновременным прессованием плиточного слоя и глазури. Устройство глазуровочного конвейера для плиток. Роторные и роторноконвейерные линии и возможности их использования в технологии керамики в сравнении с роботизированными. Принципы выбора оборудования для построения технологических схем и основы проектирования.

Раздел 3. Оборудование и технологии для производства изделий из стекла и механической обработки силикатных материалов

- 3.1. Теоретическое и технологическое обоснование химических составов стекол, применяемых в настоящее время. Сырьевые компоненты, используемые в стеклоделии. Оборудование для хранения, обработки, транспортировки, дозирования, смешивания и хранения сырьевых компонентов, необходимых для получения шихты. Комплектация современных машинолиний, используемых для получения стекольной шихты. Процессы, происходящие при стекловарении.
- 3.2. Виды стекловаренных печей. Особенности работы и функционирования горшковых и ванных стекловаренных печей. Особенности конструкции и функционирования бассейнов и пламенных пространств ванных газовых стекловаренных печей. Особенности работы и конструкции электрических стекловаренных печей. Способы питания стеклоформующих машин стекломассой. Порционное питание, производимое механическим отбором стекломассы. Конструктивные особенности и характеристика работы ковшевого, вакуумного и шарового питателей. Капельное питание, устройство и особенности работы фидеров.
- 3.3. Современные методы формования штучных изделий из стекла. Схемы получения и работа форм при производстве узкогорлой и широкогорлой стеклотары, стеклопосуды, тонкостенных изделий из стекла и прессованных стеклоизделий. Назначение и особенности технологической операции отжиг стекла. Печи для отжига стекла, Основы расчета режима отжига стеклоизделий.
- 3.4. Виды механической обработки. Особенности абразивного разрушения стекла и других силикатных материалов. Процессы, происходящие с обрабатываемым материалом и абразивным инструментом при шлифовании. Режимы работы шлифовального инструмента. Современные виды абразивов, связок и инструментов, их особенности и маркировка. Процессы, происходящие при полировании материалов. Виды современных полировальных порошков и инструментов.

Пути дальнего совершенствования процессов и оборудования для производства керамики, изделий из вяжущих материалов и стекла.

5. COОТВЕТСТВИЕ СОДЕРЖАНИЯ ТРЕБОВАНИЯМ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

№	В результате освоения д долже	•	Раздел 1	Раздел 2	Раздел 3
	Знати				
1	- классификацию оборудования для реализа	основных видов ации ТХОМ;	+	+	+
2	- принципы работы, досто основных типов с промышленного и производства художесть стекла, керамики и вяжуш	оборудования для индивидуального венных изделий из	+	+	+
	- основные виды печног производства изделий из вяжущих материалов;		+	+	+
		* '	+	+	+
	Умет	ь:			
3	- определять оборудо инструмент, необходими технологических про промышленном масшт индивидуальном уровне художественных изделий вяжущих материалов.	ые для проведения цессов, как в табе, так и на троизводстве	+	+	+
	Владет	гь:			
5	- методами сбора и обрасосновном оборудования высокое качество художе стекла, керамики и вя повышении производит культуры производст загрязнения окружающей совершенствования обору	+	+	+	
	В результате освоения дисциплины студент должен приобрести следующие				
	компетенции и индикаторы их достижения				
6	Код и наименование ПК	Код и наименование индикатора достижения ПК			

ОПК-3. Способен проводить измерения параметров структуры, свойств художественных материалов, художественно-промышленных объектов и технологических процессов их изготовления.	ОПК-3.2. Способен проводить измерения параметров технологических процессов изготовления художественнопромышленных объектов.	+	+	+
ОПК-5. Способен реализовывать технические решения в профессиональной деятельности, выбирать эффективные и безопасные технические средства и технологии.	ОПК-5.1. Реализует технические решения в профессиональной деятельности, выбирать эффективные и безопасные технические средства, и технологии.	+	+	+

6. ПРАКТИЧЕСКИЕ И ЛАБОРАТОРНЫЕ ЗАНЯТИЯ

6.1. Практические занятия

Учебным планом подготовки бакалавров по направлению 29.03.04 предусмотрено проведение практических занятий по дисциплине «Оборудование для реализации ТХОМ» в объеме 16 часов (0,44 зач. ед.). Практические занятия проводятся под руководством преподавателя и направлены на углубление теоретических знаний, полученных бакалавром на лекционных занятиях, формирование понимания связей между теоретическими положениями и методологией решения практических задач по тематике лекций, приобретение навыков применения теоретических знаний в практической работе.

Примерный перечень практических занятий

		примерный перелень практи леских запитии	
№ п/п Разде л	№ раздела Дисцип-лины	Тема практических (семинарских) занятий	Часы
1.	1.2	Оборудование для измельчения материалов	2
2.	1.3	Физико-химические основы измельчения материалов	2
3.	2.1	Специфическое оборудование для подготовки формовочных масс,	2
4.	2.1	Оборудование для изготовления изделий способом пластического формования.	2
5.	2.2	Оборудование для прессования изделий из порошкообразных масс, литья керамических изделий,	2

6.	2.2	Оборудование для формования методом обточки, глазурования и нанесения рисунка. Основы проектирования.	2
7.	3.3	Современные методы формования штучных изделий из стекла.	2
8.	3.4	Виды механической обработки	2

6.2. Лабораторные занятия

Лабораторные занятия по дисциплине не предусмотрены.

7. САМОСТОЯТЕЛЬНАЯ РАБОТА

Учебной программой дисциплины «Оборудование для реализации ТХОМ» предусмотрена самостоятельная работа студента в объеме 24 часа. Самостоятельная работа проводится с целью углубления знаний по дисциплине и предусматривает:

- 1. регулярную проработку пройденного на лекциях и практических занятиях учебного материала и подготовку к выполнению контрольных работ по разделам курса;
- 2. ознакомление и проработку рекомендованной литературы и работу с электроннобиблиотечными системами, включая переводы публикаций из научных журналов, цитируемых в базах Scopus, Web of Science, Chemical Abstracts, РИНЦ;
- 3. посещение отраслевых выставок, семинаров, конференций различного уровня;
- 4. участие в семинарах РХТУ им. И. Менделеева по тематике курса;
- 5. подготовку к сдаче зачета по курсу.

8. ПРИМЕРЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

8.1. Примеры контрольных вопросов для текущего контроля освоения дисциплины

Максимальная оценка для текущего контроля — 60 баллов. Из них за работу на практических занятиях 20 баллов, за результаты по 4-м контрольным работам 40 баллов. Максимальная оценка по каждой контрольной работе 10 баллов. Каждая работа состоит из 2-х вопросов, максимально по 5 баллов за каждый вопрос.

Раздел 1. Контрольная работа №1 содержит 2 вопроса. Максимальная оценка – 10

Контрольный вопрос № 1.1. Максимальная оценка за вопрос – 5 баллов.

- 1. Общие сведения о процессах измельчения.
- 2. Основные свойства измельчаемых материалов.
- 3. Прочность измельчаемых материалов.
- 4. Хрупкость измельчаемых материалов.
- 5. Абразивность измельчаемых материалов.
- 6. Влажность измельчаемых материалов.
- 7. Способы измельчения материала.
- 8. Классификация процессов измельчения.
- 9. Характеристики качества измельчения материала.
- 10. Классификация оборудования для измельчения материалов.
- 11. Классификация дробильных машин.
- 12. Классификация машин для помола материалов.
- 13. Щековые дробилки. Классификация, принцип работы, назначение.
- 14. Особенности конструкции, принцип действия, преимущества и недостатки щековых

дробилок с простым движением щеки.

- 15. Особенности конструкции, принцип действия, преимущества и недостатки щековых дробилок со сложным движением щеки.
- 16. Конусные дробилки. Классификация, принцип работы, назначение.
- 17. Особенности конструкции, принцип действия, преимущества и недостатки короткоконусных дробилок.
- 18. Особенности конструкции, принцип действия, преимущества и недостатки длинноконусных дробилок.
- 19. Сравните щековые и конусные дробилки.
- 20. Валковые дробилки. Классификация, принцип работы, назначение.
- 21. Особенности конструкции, принцип действия, преимущества и недостатки валковых дробилок для гранулирования пластичной массы.
- 22. Особенности конструкции, принцип действия, преимущества и недостатки одно- и двух-валковых дробилок.
- 23. Сравните щековые и валковые дробилки.
- 24. Сравните конусные и валковые дробилки.
- 25. Дробилки ударного действия. Классификация, принцип работы, назначение.
- 26. Особенности конструкции, принцип действия, преимущества и недостатки молотковых дробилок.
- 27. Особенности конструкции, принцип действия, преимущества и недостатки ударноотражательных дробилок.
- 28. Особенности конструкции, принцип действия, преимущества и недостатки ударноотражательной дробилки-сушилки.
- 29. Сравните щековые и молотковые дробилки.
- 30. Сравните конусные и ударно-отражательные дробилки.
- 31. Сравните валковые и ударно-отражательные дробилки
- 32. Комбинированные дробилки, их основные преимущества.
- 33. Глинорыхлители. Устройство, принцип работы, назначение.
- 34. Реализация дополнительных способов измельчения в щековых, конусных и валковых дробилках.
- 35. Бронефутеровка дробильных машин. Выбор вида поверхности бронефутеровки для реализации дополнительных способов измельчения.
- 36. Способы защиты щековых, конусных и валковых дробилок от куска недробимого материала.
- 37. Способы защиты молотковых, щечно-валковых и ударно-отражатедьных дробилок от куска недробимого материала.
- 38. Интенсификаторы помола.
- 39. Способы рассева материалов.
- 40. Классификация материалов. Оборудование, применяемое для классификации материалов.
- 41. Разделение частиц в воздушном потоке. Статический, динамический и центробежный сепаратор.
- 42. Конструкция и функционирование валкового грохота.
- 43. Конструкция и функционирование сита-бурат.
- 44. Конструкция и функционирование виброгрохота.
- 45. Конструкция и функционирование колосникового возвратно-поступательного грохота.
- 46. Оборудование для классификации твердых частиц в сырьевых шламах.
- 47. Дуговые сита, их назначение и функционирование.
- 48. Условия протекания процесса рассева.
- 49. Конструкция и принцип функционирования грохотов.

Контрольный вопрос № 1.2. Максимальная оценка за вопрос – 5 баллов.

- 1. Особенности конструкции и принцип действия шаровых мельниц.
- 2. Классификация шаровых мельниц
- 3. Преимущества и недостатки шаровых мельниц.
- 4. Факторы, влияющие на производительность мельницы.
- 5. Межкамерные перегородки, их назначение и разновидности.
- 6. Мелющие тела шаровых мельниц.
- Коэффициент заполнения мельниц мелющими телами и его влияние на работу мельниц.
- 8. Основной и вспомогательный привод вращающейся печи, их назначение.
- 9. Бронефутеровка шаровых мельниц.
- 10. Аспирация мельниц.
- 11. Конструкция загрузочных и разгрузочных устройств шаровых мельниц.
- 12. Центральный, переферийный и дугостаторный привод шаровых мельниц.
- 13. Шаровые мельницы сухого помола. Влияние влажности измельчаемого материала на работу шаровых мельниц.
- 14. Шаровые мельницы периодического и непрерывного действия. Устройство, принцип работы, назначение.
- 15. Привод шаровых мельниц, вспомогательный привод мельниц.
- 16. Режимы движения мелющих тел в шаровых мельницах.
- 17. Оптимальная траектория движения мелющих тел.
- 18. Открытый и замкнутый цикл работы мельницы, способы его организации.
- 19. Технико-экономические преимущества применения замкнутого цикла.
- 20. Определение оптимальной, рабочей и критической скорости вращения шаровых мельниц.
- 21. Циркуляционная нагрузка сепаратора.
- 22. Сравните шаровые и вертикальные среднеходные мельницы.
- 23. Сравните шаровые мельницы и мельницы самоизмельчения Аэрофол и Гидрофол.
- 24. Сравните вертикальные среднеходные мельницы и мельницы HOROMIL.
- 25. Сравните мельницы самоизмельчения Аэрофол и Гидрофол и струйный мельнцы.
- 26. Особенности конструкции, принцип действия мельниц самоизмельчения Аэрофол и Гидрофол.
- 27. Преимущества и недостатки мельниц самоизмельчения Аэрофол и Гидрофол.
- 28. Способы реализации измельчения частиц критического размера в мельницах Аэрофол и Гидрофол.
- 29. Особенности конструкции и принцип действия вертикальных среднеходных мельниц.
- 30. Преимущества и недостатки вертикальных среднеходных мельниц.
- 31. Реализация совместного помола с сушкой в вертикальных среднеходных мельницах.
- 32. Дезинтеграторы. устройство, принцип работы, назначение.
- 33. Особенности конструкции, принцип действия, преимущества и недостатки дезинтеграторов.
- 34. Особенности конструкции, принцип действия струйных мельниц.
- 35. Преимущества и недостатки струйных мельниц
- 36. Конструкция, принцип действия мельниц HOROMIL.
- 37. Преимущества и недостатки мельниц HOROMIL.
- 38. Применение вибрации при измельчении. Достоинства и недостатки применения вибрации.
- 39. Вибромельницы периодического и непрерывного действия. Устройство, принцип работы, назначение.
- 40. Особенности конструкции, принцип действия, преимущества и недостатки вибрационных мельниц.

- 41. Сравните шаровые и вибрационные мельницы.
- 42. Способы организации замкнутого цикла работы мельниц, его преимущества.
- 43. Способы снижения энергозатрат при измельчении материалов.
- 44. Способы повышения эффективности работы мельниц.
- 45. Глиноболтушка. Устройство, принцип работы, назначение.
- 46. Стержневая мельница. Устройство, принцип работы, назначение.
- 47. Производство гипсовых вяжущих. Основные технологические стадии, применяемое оборудование.
- 48. Производство портландцемента мокрым способом. Основные технологические операции, применяемое оборудование.
- 49. Производство портландцемента сухим способом. Основные технологические операции, применяемое оборудование.
- 50. Принципы выбора дробилок в зависимости от свойств материала.

Раздел 2. Раздел содержит две контрольные работы (№2.1 и №2.2), каждая из которых состоит из 2-х вопросов. Максимальная оценка за каждую работу10 баллов.

Контрольный вопрос № 2.1.1. Максимальная оценка 5 баллов

- 1. Для каких материалов можно использовать винтовые дозаторы?
- 2. Режим подачи материала в автоматические весы.
- 3. Достоинства и недостатки объемного и весового дозирования.
- 4. Укажите путь масс (элементы конструкции) в двухвальном смесителе с протирочной решеткой.
- 5. Сколько воды можно ввести с паром в глинистую массу в смесителе и почему? Как вводят дополнительную воду?
- 6. Укажите путь глины (элементы конструкции, через которые она проходит) в глинозапаснике.
- 7. Как подают пар и воду в двухвальных лопастных смесителях?
- 8. Укажите путь массы (элементы конструкции) в глинорастирателе.
- 9. Укажите путь массы (элементы конструкции) в глинозапаснике?
- 10. Двухвальный прямоточный и противоточный смесители.
- 11. Глинорастиратель. Путь массы (элементы конструкции, через которые она проходит).
- 12. Глинозапасник. Путь массы (элементы конструкции, через которые она проходит).
- 13. Укажите и объясните порядок смешивания шихты, содержащей шамот и глиняный порошок. Выберите агрегат для этого процесса.
- 14. Смесители фирмы Eirich.
- 15. Сравните смесительные бегуны со скоросмесителем при приготовлении массы для шамотных огнеупоров
- 16. Достоинства и недостатки горизонтального лопастного смесителя.
- 17. Почему для смешивания шликеров редко используют барботаж?
- 18. Какие задачи выполняют шликерные мешалки в керамическом производстве?
- 19. Укажите соотношение диаметра винта пропеллерной мешалки к размеру (диаметру) бассейна.
- 20. Объясните, почему бассейн для пропеллерной мешалки выполняется в форме многогранника, переходящего в усеченную пирамиду, а не в виде цилиндра?
- 21. Достоинства пропеллерных мешалок.
- 22. В каких случаях используют в качестве смесителя шаровые мельницы?
- 23. Общие элементы конструкций у машин для непрерывного распускания глин.

- 24. Комбинированная дробилка и Мельница-мешалка Сладкова
- 25. Какие способы обезвоживания керамических масс Вы знаете? Сравните их по энергетическим затратам.
- 26. Почему для керамических масс обычно не применяют вакуум-фильтры?
- 27. Назовите достоинства и недостатки рамного и камерного фильтр-прессов. Как распределяется влага по сечению коржа?
- 28. Как изменяют давление шликера в фильтр-прессах и почему?
- 29. Какие принципы закладывали конструкторы при создании автоматических фильтрпрессов?
- 30. Почему толщина коржа в фильтр-прессе составляет 20-30 мм?
- 31. Мембранный фильтр-пресс.
- 32. Как можно приготовить пластичную массу со строго определенной влажностью?
- 33. Достоинства и недостатки червячного насоса.
- 34. Почему для перекачки шликеров применяют специальные насосы? Назовите их.
- 35. Поршневые насосы с керамическими поршнями и цилиндрами.
- 36. Почему для керамических шликеров используют мембранные насосы?
- 37. Пневматические мембранные насосы для перекачки шликера?
- 38. Почему меняется со временем службы влажность массы, получаемая в фильтр-прессах?
- 39. Укажите путь массы на технологической схеме РС НИИСТРОЙКЕРАМИКИ.
- 40. Общие элементы конструкций в различных БРС.
- 41. Укажите влажность масс до и после распылительной сушилки.
- 42. Почему в БРС влажность гранул разного размера выравнивается в процессе сушки?
- 43. Почему после распылительной сушилки порошки имеют стабильный размер и влажность?
- 44. Сравните достоинства и недостатки БРС и сушилок в кипящем слое.
- 45. Сушилки кипящего слоя Glatt.
- 46. Преимущества и недостатки применения грануляторов вместо РС.
- 47. Основные отличия гранул после БРС и гранулятора.
- 48. Какие материалы подаются в гранулятор Vomm? До какой влажности сначала увлажняется масса и до какой сушится?
- 49. В чем преимущества сушки шликера в сушилке кипящего слоя по сравнению с РС?
- 50. Достоинства и недостатки грануляторов.

Контрольный вопрос № 2.1.2. Максимальная оценка за вопрос – 8 баллов.

- 1. Сравните между собой поршневые и шнековые пресса.
- 2. Назовите виды пластического формования и влажности используемых при формовании этими методами масс.
- 3. Назовите основные узлы ленточного пресса, их назначение.
- 4. Перечислите меры борьбы с проворачиванием и обратными потоками.
- 5. Конструкции шнеков ленточных прессов и выжимных лопастей.
- 6. Какие устройства применяют для снижения трения о стенки мундштука? Зачем это необходимо?
- 7. Нарисуйте кривую распределения давления массы по зонам ленточного пресса.
- 8. Назовите траекторию массы (элементы конструкции) в безвакуумном и вакуумном ленточном прессе.
- 9. Каким образом желательно изменить длину и конусность головки пресса и мундштука при переходе от менее пластичной к более пластичной массе.
- 10. Виды воздуха в пластичной массе и процесс его удаления из пластичной массы.

- 11. Почему воздух в пластичной массе называют иногда отощителем?
- 12. К чему может привести слишком высокий вакуум в вакуум-прессе? Как его необходимо изменить при прессовании более пластичной массы?
- 13. Назовите траекторию движения воздуха (элементы конструкции) в масляном вакуумном насосе.
- 14. Назовите траекторию движения воздуха (элементы конструкции) в водокольцевом вакуумном насосе.
- 15. Назовите траекторию массы (элементы конструкции) в одновальном и в двухвальном вакуумном ленточном прессе.
- 16. Перечислите виды брака, возникающие при формовании на вакуумном ленточном прессе.
- 17. Какие виды брака возникают при формовании многощелевого кирпича? Какие виды брака не возникают по сравнению с формованием полнотелого кирпича?
- 18. Формула объемной производительности винтового пресса.
- 19. Перечислите стадии формования керамической трубы на трубном вертикальном прессе.
- 20. Достоинства и недостатки формования канализационных труб на вертикальных и горизонтальных прессах.
- 21. Как осуществляют формование раструба и трубы в трубном прессе?
- 22. Какие 3 системы имеются в резательных станках, разрезающих выходящий из мундштука брус?
- 23. Какие принципы используют в резательных станках, чтобы обеспечить прямой разрез?
- 24. Как работает фрикцион?
- 25. Укажите достоинства формования роликовым шаблоном.
- 26. Зачем подогревают металлический ролик для формования методом раскатки?
- 27. Почему передача от двигателя на управляющие валы в полуавтоматах АСФ осуществляют с помощью червячной передачи?
- 28. Каким образом попадает масса с формой на шпиндель в полуавтомате АСФ-07?
- 29. Назовите операции, которые выполняет полуавтомат АСФ-07.
- 30. Принцип работы Мальтийского механизма. В каких машинах его применяют?
- 31. Где пересекаются оси вращения шпинделя и ролика? Что произойдет при отклонении от этого положения?
- 32. Перечислите операции, выполняемые на линии «Сервис».
- 33. Какой механизм используют для дозирования массы на линии «Сервис»?
- 34. Процессы, происходящие в массе при формовании роликом. Соотношение скоростей вращения ролика и шпинделя.
- 35. Виды брака при раскатке. Причины брака и способы их устранения.
- 36. Требования, предъявляемые автоматическими линиями для раскатки к пластичности массы.
- 37. Как выталкивают изделие на прессе Самарина?
- 38. Как осуществляется съем прессовки на прессе Самарина и на прессе для прессования черепицы?
- 39. Как выталкивается заготовка из формы в прессе Самарина?
- 40. Пластичная масса для допрессовки несжимаема. Куда удаляют избытки массы при прессовании на прессе Самарина?
- 41. Почему для формования пластических масс применяют эксцентриковый механизм?
- 42. Происходит ли уплотнение сырца при прессовании на прессе Самарина? Что остается постоянным: масса, объем или форма изделия?
- 43. Какой прессующий механизм на прессе Самарина и прессе для прессования черепицы?

- 44. Перечислите позиции, на которые попадает масса при прессовании на прессе для штамповки черепицы.
- 45. Какие операции происходят на сторонах стола при формовании черепицы?
- 46. Что произойдет после обжига и почему, если тарелку отформовать не раскаткой, а допрессовкой?
- 47. Принцип работы коленорычажного механизма.
- 48. Кривая прессования. Почему коленорычажные прессы экономичны?
- 49. Как регулируют давление прессования в коленорычажном прессе и прессе с гидравлическим регулированием давления?
- 50. Основные элементы конструкции коленорычажного пресса.
- 51. Как организуют паузы (ступенчатость) при прессовании на коленорычажных прессах?

Раздел 2. Контрольная работа № 2.2. состоит из 2-х вопросов. Максимальная оценка 10 балов.

Контрольный вопрос № 2.2.1. Максимальная оценка 5 баллов.

- 1. Как регулируют число ударов на коленорычажном прессе.
- 2. Как осуществляют двухстороннее прессование на ПК-630 и СМ-1085?
- 3. Назовите траекторию (элементы конструкции) передачи усилия в прессе СМ-301.
- 4. Какую роль играет трехзвенный коленорычажный механизм в СМ-301?
- 5. Зачем нужна система гидравлического регулирования давления в коленорычажных прессах? Принимает она участие в выталкивании заготовки?
- 6. Как образуются паузы в прессовании на коленорычажных прессах с системой гидравлического регулирования?
- 7. Назовите достоинства и недостатки фрикционных прессов.
- 8. Чем регулируют плотность прессовки на фрикционных прессах?
- 9. Как осуществляют двухстороннее прессование и выталкивание изделий на фрикционном прессе 4КФ-200?
- 10. Для чего предназначен пневмоцилиндр под нижним штампом на прессе 4КФ-200 и на прессе ПК-630?
- 11. Достоинства и недостатки фрикционных прессов. Области их применения.
- 12. Основные типы конструкций фрикционных прессов.
- 13. Назовите основные детали фрикционных прессов.
- 14. Назовите траекторию (элементы конструкции) передачи усилия во фрикционных прессах.
- 15. Назовите общие детали, которые содержат винтовые прессы с дугостаторным двигателем и фрикционные прессы?
- 16. Что предусмотрено во фрикционном прессе 4КФ-200 для увеличения хода верхнего штампа?
- 17. Назовите достоинства и недостатки гидравлических прессов. Области их применения.
- 18. Назовите достоинства и недостатки гидроцилиндров поршневого и плунжерного типов.
- 19. Как поднимают верхний штамп в гидравлических прессах с главным поршнем плунжерными типа?
- 20. Обоснуйте преимущества двухступенчатого прессования на гидравлических прессах?
- 21. Как вычислить давление прессования на гидравлическом прессе, если известно давление в системе и площадь поршня?

- 22. Пути повышения экономичности (приближения к работе прессования) на гидравлических прессах.
- 23. Как устроен мультипликатор?
- 24. Укажите типы аккумуляторов для гидравлических прессов. Зачем их применяют?
- 25. Способы повышения производительности гидравлических прессов.
- 26. Зеркальные пресс-формы для прессования плиток.
- 27. Пресс-формы с передачей для прессования плиток.
- 28. Гиростатические пресс-формы для прессования плиток.
- 29. Достоинства и недостатки вибрационного прессования.
- 30. Гидростатическое прессование по «мокрому методу».
- 31. Гидростатическое прессование по «сухому методу».
- 32. Принципы горячего прессования.
- 33. Достоинства и недостатки квазиизостатического прессования.
- 34. Технические проблемы, сдерживающие конструирование газостатов.
- 35. Принципы горячего изостатического прессования.
- 36. Как готовят заготовку для использования в газостате?
- 37. Как регулируется плотность сырца во всех видах прессов?
- 38. Назовите методы и способы литья из водных шликеров. В чем их отличия, недостатки, достоинства?
- 39. Сформулируйте требования к водным шликерам для литья.
- 40. Объясните, почему при формовании методом литья заготовки сохраняют форму тела вращения после сушки и обжига?
- 41. Нарисуйте структурно-технологическую схему формования методом водного литья.
- 42. Какие операции необходимо произвести при водном литье?
- 43. Сформулируйте требования к формам для литья из водных шликеров.
- 44. Назовите достоинства и недостатки полимерных, металлических и керамических форм для литья.
- 45. Какие основные требования закладывали конструкторы при создании конвейерных линий для литья?
- 46. Достоинства и недостатки одноэтажных и двухэтажных конвейеров?
- 47. Какие операции выполняют на двухэтажном конвейере (на примере CM-461A) и на одноэтажном конвейере (на примере конвейера Ростехстроя)?
- 48. Сравните основные достоинства и недостатки ручных, механизированных стендов и конвейеров.
- 49. Как удаляют избыток шликера на конвейерах для водного литья?
- 50. С помощью чего синхронизируется работа узлов СКВ-2?
- 51. Как осуществляют поворот стола в СКВ-2? Где расположен механизм по отношению к столу?

Контрольный вопрос № 2.2.2. Максимальная оценка 5 баллов.

- 1. Какие преимущества имеет литье на механизированном стенде, по сравнению с конвейерным?
- 2. Какие операции выполняются на механизированном стенде?
- 3. Составьте структурно-технологическую схему формования методом горячего литья.
- 4. Перечислите требования к горячим шликерам. Зачем при горячем литье применяют ПАВ?
- 5. Опишите процесс приготовления шликера для горячего литья. Какие операции должна выполнять машина для горячего литья?
- 6. Какие самые основные виды дефектов возможны при горячем литье? С чем они связаны?

- 7. Почему перешли от однобачковых машин к двухбачковым? Когда выгодно применять однобачковые машины?
- 8. Опишите траекторию массы (элементы конструкции) при формовании керамической фанеры на линии «НИИстройкерамика».
- 9. Опишите изготовление керамической фанеры на электрофоретической машине.
- 10. Перечислите методы изготовления керамической фанеры. Почему она не вытеснила плитку?
- 11. Получение керамической фанеры прессованием. Способ реализации, достоинства и недостатки.
- 12. Назовите способы изготовления керамических пленок для технической керамики.
- 13. В чем суть ракельного метода изготовления керамических пленок?
- 14. Изготовление керамических пленок пластическим методом.
- 15. Почему пластическим методом нельзя изготовить пленки тоньше 1 мм?
- 16. Изготовление керамических пленок методом каландирования.
- 17. Сравните ракельный метод и метод каландирования для изготовления керамических пленок.
- 18. Составьте структурно-технологическую схему формования изоляторов.
- 19. Перечислите требования к массе для обточки изоляторов. Формула для усилия резания при обточке изоляторов.
- 20. Проблемы и способы закрепления заготовки на станке для обточки изоляторов.
- 21. Перечислите методы формования изоляторов. Какова влажность формуемых масс?
- 22. Опишите операции при пластическом формовании линейных изоляторов.
- 23. Особенности прессов для формования заготовок линейных изоляторов (для высоковольтных линий).
- 24. Укажите влажность масс, формуемых на токарных станках. Чем она определяется?
- 25. Что делают со стружками при обточке изоляторов?
- 26. Достоинства и недостатки возвращения стружки на стадию приготовления шликера по сравнению с их возврата на финишную стадию приготовления пластической массы?
- 27. Какие основные виды дефектов возможны при формовании изоляторов на токарных станках? С чем они связаны?
- 28. В чем достоинства петлевых резцов?
- 29. Какие способы мокрого глазурования (шликер) Вы знаете?
- 30. Достоинства и недостатки различных методов мокрого глазурования.
- 31. Назовите способы сухого глазурования.
- 32. Достоинства и недостатки различных методов сухого глазурования.
- 33. Достоинства и недостатки сухих и мокрых методов глазурования.
- 34. Электростатические методы глазурования.
- 35. Тенденции совершенствования методов глазурования.
- 36. Основные методы нанесения рисунков на керамические заготовки
- 37. Что такое ТЭО?
- 38. Что такое «Генеральный проектировщик»?
- 39. Что такое «Генеральный подрядчик»?
- 40. Выбор места для строительства.
- 41. Какие параметры необходимо учитывать при выборе площадки для строительства?
- 42. Кто готовит материалы для выбора площадки для строительства?
- 43. Что входит в комплекс работ по выбору площадки для строительства?
- 44. Что входит в предпроектные работы?
- 45. Что указывают в задании на проектирование?
- 46. Почему лучше приобретать комплект оборудования, а не отдельные вилы оборудования? Дате развернутый ответ.

- 47. Примерный состав проекта промышленного предприятия, отдельного цеха, объекта. Перечислите входящие в него разделы.
- 48. Какие факторы учитывают при выборе площадки для строительства?
- 49. В чем особенность строительства в сложных геологических условиях?
- 50. Что указывают в задании на проектирование?
- 51. Примерный состав проекта промышленного предприятия, отдельного цеха, объекта. Перечислите входящие в него разделы.

Раздел 3. Контрольная работа № 3 состоит из 2-х вопросов. Максимальная оценка 10 балов.

Контрольный вопрос № 3.1. Максимальная оценка 5 баллов.

- 1. Стекловидное состояние. Его отличие от кристаллического. Ближний и дальний порядок.
- 2. Способы интенсификации стекловарения.
- 3. Структура кристаллического кварца и кварцевого стекла.
- 4. Стеклообразователи и модификаторы. Их положение в структурной сетке стекла.
- 5. Сырьевые компоненты, используемые для производства шихты. Основные компоненты и примеси.
- 6. Приготовление шихты. ДСО. Транспортирование шихты в МВЦ.
- 7. Составы промышленных стекол. Процессы, происходящие при варке стекла.
- 8. Классификация печей стекольного производства. Одногоршковые печи. Температурный режим варки стекла в горшковых печах.
- 9. Классификация печей стекольного производства. Многогоршковые печи. Работа регенераторов.
- 10. Классификация печей стекольного производства. Ванные стекловаренные печи. Расположение загрузчиков у печи.
- 11. Классификация стекловаренных печей. Огнеупоры, используемые для кладки бассейна ванной печи.
- 12. Классификация стекловаренных печей. Конструкция стен пламенного пространства и свода печи. Огнеупоры, используемые для кладки стен и свода печи.
- 13. Виды ванных стекловаренных печей с газовым отоплением. Работа регенераторов.
- 14. Классификация стекловаренных печей. Особенности работы электрических печей горизонтального типа. Материал электродов.
- 15. Классификация стекловаренных печей. Особенности работы электрических печей вертикального типа. Материал электродов.
- 16. Вязкость стекол. Влияние состава стекла и температуры на вязкость. Температурная шкала вязкости.
- 17. Длинные и короткие стекла. Влияние состава на длину стекла.
- 18. Стадии формования стеклоизделий. Время формообразования и время фиксации формы. Влияние длины стекла на время формования.
- 19. Температурный режим работы форм. Способы повышения качества поверхности стеклоизделий при формовании.
- 20. Способы отрезки колпачков от тонкостенных изделий.
- 21. Капельное питание машин стекломассой. Устройство и работа фидеров при капельном питании.
- 22. Отжиг. Причины проведения отжига. Печи для отжига. Режим отжига.
- 23. Капельное питание машин стекломассой. Устройство и работа фидеров при капельном питании.

- 24. Центробежное формование. Принцип формования. Установка для центробежного формования. Достоинства и недостатки метода.
- 25. Прессование. Области его применения. Работа прессующего механизма.
- 26. Схема получения узкогорлой толстостенной стеклотары.
- 27. Схема получения широкогорлой толстостенной тары.
- 28. Схема получения тонкостенной посуды из стекла.
- 29. Схема получения тонкостенных технических изделий из стекла.
- 30. Ковшевой питатель, схема его работы. Его достоинства и недостатки.
- 31. Вакуумный питатель, схема его работы. Его достоинства и недостатки.
- 32. Шаровой питатель, схема его работы. Способы регулирования размера порции стекломассы. Достоинства и недостатки питателя.
- 33. Царапина, образующаяся на поверхности стекла при шлифовании.
- 34. Рельефный, трещиноватый и нарушенный слои стекла.
- 35. Роль СОЖ в процессе шлифования.
- 36. Особенности абразивного разрушения ситаллов.
- 37. Износ абразивных зерен шлифовального инструмента.
- 38. Износ связки абразивного инструмента.
- 39. Особенности работы абразива в эластичной связке.
- 40. Подготовка поверхности стекла к полированию.
- 41. Способы полирования поверхности стекла. Их практическая реализация.
- 42. Полировальные порошки. Материалы полировальников.
- 43. Функции связки в абразивном инструменте. Металлическая, бакелитовая и магнезиальная связки.
- 44. Карбид кремния. Расшифровать КЧ №12 и КЗ М28.
- **45**. Природный и синтетический алмазы. Расшифровать AC-65; 200/160; 100%; M2-01.
- 46. Виды абразивов. Влияние размеров абразивных частиц и их концентрации в инструменте на интенсивность шлифования.
- 47. Режимы работы абразивного инструмента (интенсивный износ, нормальный режим, самозатачивание и затупление).
- 48. Особенности полирования ситаллов.
- 49. Гипотезы механического полирования ситаллов.
- 50. Гипотезы механического полирования стекла.

Контрольный вопрос № 3.2. Максимальная оценка 5 баллов.

- 1. Ближний и дальний порядок в структуре силикатов, их реализация для аморфных и кристаллических тел.
- 2. Процесс стекловарения и возможные методы его интенсификации.
- 3. Структура кристаллического кварца и кварцевого стекла.
- 4. Положение в структурной сетке аморфного материала стеклообразователей и модификаторов
- 5. Основные сырьевые материалы, применяемые в стеклоделии.
- 6. Принципы организации дозировочно-смесительных отделений в стекольном производстве.
- 7. Промышленные стекла, используемые для массового производства стеклоизделий, их химические составы.
- 8. Малотоннажные одногоршковые печи, используемые для стекловарения. Температурный режим варки стекла в горшковых печах.
- 9. Малотоннажные регенеративные многогоршковые печи, используемые для стекловарения.

- 10. Современные ванные стекловаренные печи с газовым отоплением, варианты расположения загрузчиков у них.
- 11. Современные огнеупоры, используемые для кладки бассейна ванной печи. Конструкции бассейнов печей.
- 12. Современные огнеупоры, используемые для кладки стен пламенного пространства и свода ванной печи, огнеупоры, используемые для их кладки.
- 13. Конструкции современных ванных стекловаренных печей с газовым отоплением.
- 14. Конструкции и особенности работы электрических ванных печей горизонтального типа.
- 15. Конструкции и особенности работы электрических ванных печей вертикального типа.
- 16. Температурная шкала вязкости. Основные параметры, определяющие вязкость стекол.
- 17. Понятие «длина» стекла. Влияние химического состава стекла на его длину.
- 18. Формование стеклоизделий, стадии этого процесса. Влияние длины стекла на время формования.
- 19. Работа форм при изготовлении стеклоизделий, их температурный режим. Способы повышения качества поверхности стеклоизделий при формовании.
- 20. Виды изделий, получаемые с колпачком, методы удаления колпачков от тонкостенных изделий.
- 21. Случаи использования капельного питания машин стекломассой. Устройство и работа фидеров при капельном питании.
- 22. Работа современных устройств для отжига стеклоизделий, режимы проведения этого процесса. Отжиг.
- 23. Капельное питание машин стекломассой. Устройство и работа фидеров при капельном питании.
- 24. Формование изделий из стекла центробежным способом. Принцип формования. Установка для центробежного формования. Достоинства и недостатки метода.
- 25. Виды изделий из стекла, получаемые методом прессования. Особенности работы прессующего механизма.
- 26. Виды узкогорлых стеклянных изделий, получаемые механизированными способами, производство узкогорлой толстостенной стеклотары.
- 27. Виды широкогорлых стеклянных изделий, получаемые механизированными способами, производство широкогорлой толстостенной тары.
- 28. Технологические стадии получения тонкостенной посуды из стекла.
- 29. Технологические стадии получения тонкостенных технических изделий из стекла.
- 30. Особенности работы ковшевого питателя стекломассы, технологические стадии отбора порции стекломассы.
- 31. Особенности работы вакуумного питателя стекломассы, технологические стадии отбора порции стекломассы.
- 32. Особенности работы шарового питателя стекломассы, технологические стадии отбора порции стекломассы.
- 33. Процесс образования царапины на поверхности стекла при шлифовании.
- 34. Возникновение рельефного, трещиноватого и нарушенного слоев на поверхности шлифуемого стекла.
- 35. Использование СОЖ при шлифовании стекол и ситаллов.
- 36. Влияние гетерогенной структуры ситаллов на их абразивное разрушение в процессе шлифования.
- 37. Причины и стадии износа абразивных зерен шлифовального инструмента в процессе его эксплуатации.
- 38. Причины и стадии износа связки абразивного инструмента при его эксплуатации.

- 39. Абразивный инструмент на эластичной связке. Особенности его работы при шлифовании стекол и ситаллов.
- 40. Стадии постепенной подготовки поверхности стекла к полированию.
- 41. Виды современных изделий из стекла, требующие полирования. Физико-химические основы возможных способов полирования поверхности стекла.
- 42. Полировальные порошки и материалы полировальников, используемые в настоящее время для механической обработки стекол и ситаллов.
- 43. Виды связок, применяемые для создания абразивных инструментов. Особенности свойств и работы металлической, бакелитовой и магнезиальной связок.
- 44. Использование карбида кремния для шлифования изделий из стекол и ситаллов. Свойства этого материала и особенности его эксплуатации.
- 45. Применение природного и синтетического алмазов для шлифования изделий из стекол и ситаллов. Свойства природных и синтетических алмазов и особенности их работы.
- 46. Виды современных абразивов, применяемые в настоящее время для шлифования стекол и ситаллов. Влияние размеров и концентрации их частиц в инструменте на интенсивность шлифования.
- 47. Эксплуатация абразивного инструмента при шлифовании стекол и ситаллов и режимы его работы.
- 48. Влияние гетерогенной структуры ситаллов на процесс их механического полирования.
- 49. Современные представления о физико-химических процессах, происходящих при полировании изделий из ситаллов.
- 50. Современные представления о физико-химических процессах, происходящих при полировании изделий из стекол.

8.2. Вопросы для итогового контроля освоения дисциплины (зачет с оценкой). Максимальное количество баллов за зачет 40 баллов.

Билет содержит 3 вопроса: 1 и 3 вопросы — 12 баллов каждый, вопрос 2 (как наиболее емкий по количеству материала) — 16 баллов.

Раздел 1. Вопрос 1. Максимальная оценка 12 баллов.

- 1. Классификация оборудования для измельчения материалов.
- 2. Производство гипсовых вяжущих. Основные технологические стадии, применяемое оборудование.
- 3. Производство портландцемента мокрым способом. Основные технологические операции, применяемое оборудование.
- 4. Производство портландцемента сухим способом. Основные технологические операции, применяемое оборудование.
- 5. Выбор щековых дробилок для первичного дробления материалов. Классификация, принцип работы и назначение щековых дробилок.
- 6. Особенности конструкции, принцип действия, преимущества и недостатки щековых дробилок с простым движением щеки.
- 7. Особенности конструкции, принцип действия, преимущества и недостатки щековых дробилок со сложным движением щеки.
- 8. Выбор конусных дробилок для первичного дробления материалов. Классификация, принцип работы и назначение конусных дробилок.
- 9. Особенности конструкции, принцип действия, преимущества и недостатки короткоконусных дробилок.
- 10. Особенности конструкции, принцип действия, преимущества и недостатки длинноконусных дробилок.

- 11. Выбор валковых дробилок для первичного дробления материалов. Классификация, принцип работы, назначение валковых дробилок.
- 12. Особенности конструкции, принцип действия, преимущества и недостатки валковых дробилок для гранулирования пластичной массы.
- 13. Особенности конструкции, принцип действия, преимущества и недостатки одно- и двух-валковых дробилок.
- 14. Выбор дробилок ударного действия. Классификация, принцип работы, назначение дробилок ударного действия.
- 15. Особенности конструкции, принцип действия, преимущества и недостатки молотковых дробилок.
- 16. Особенности конструкции, принцип действия, преимущества и недостатки ударноотражательных дробилок.
- 17. Особенности конструкции, принцип действия, преимущества и недостатки ударноотражательной дробилки-сушилки.
- 18. Особенности конструкции, принцип действия, преимущества и недостатки комбинированных дробилок.
- 19. Способы защиты щековых, конусных и валковых дробилок от куска недробимого материала.
- 20. Способы защиты молотковых, щечно-валковых и ударно-отражатедьных дробилок от куска недробимого материала.
- 21. Интенсификаторы помола. Виды интенсификаторов помола и механизм их действия.
- 22. Способы рассева материалов. Виды рассеивающих поверхностей. Условия протекания процесса рассева.
- 23. Классификация материалов. Оборудование, применяемое для классификации материалов.
- 24. Разделение частиц в воздушном потоке. Статический, динамический и центробежный сепаратор.
- 25. Конструкция и функционирование валкового грохота, сита-бурат, виброгрохота, колосникового возвратно-поступательного грохота.
- 26. Выбор шаровых мельниц для измельчения материалов. Особенности конструкции и принцип действия шаровых мельниц.
- 27. Шаровые мельницы периодического и непрерывного действия. Устройство, принцип работы, назначение.
- 28. Факторы, влияющие на производительность мельницы.
- 29. Способы повышения производительности помольных машин.
- 30. Открытый и замкнутый цикл работы мельницы, способы его организации. Техникоэкономические преимущества применения замкнутого цикла.
- 31. Аспирация мельниц. Эффективность использования аспирации мельницы
- 32. Коэффициент заполнения мельниц мелющими телами и его влияние на работу мельниц. Режимы движения мелющих тел в шаровых мельницах. Оптимальная траектория движения мелющих тел.
- 33. Центральный, переферийный и дугостаторный привод шаровых мельниц.
- 34. Основной и вспомогательный привод вращающейся печи, их назначение.
- 35. Бронефутеровка дробильных агрегатов и помольных машин. Виды бронефутеровки, эффективность ее применения.
- 36. Шаровые мельницы. Определение оптимальной, рабочей и критической скорости вращения шаровых мельниц.
- 37. Циркуляционная нагрузка сепаратора.
- 38. Способы снижения энергозатрат при измельчении материалов.

- 39. Выбор вибромельниц для тонкого измельчения материалов. Особенности конструкции, принцип действия, преимущества и недостатки вибрационных мельниц.
- 40. Вибромельницы периодического и непрерывного действия. Устройство, принцип работы, назначение.
- 41. Сравните преимущества и недостатки шаровых мельниц и вибромельниц.
- 42. Выбор мельниц самоизмельчения Аэрофол и Гидрофол для измельчения материалов. Особенности конструкции, принцип действия мельниц самоизмельчения Аэрофол и Гидрофол.
- 43. Сравните преимущества и недостатки мельниц самоизмельчения Аэрофол и Гидрофол и шаровых мельниц.
- 44. Выбор мельниц HOROMIL. Конструкция, принцип действия мельниц HOROMIL.
- 45. Преимущества и недостатки мельниц HOROMIL и вертикальных среднеходных мельниц.
- 46. Выбор вертикальных среднеходных мельниц для измельчения материалов. Особенности конструкции, принцип действия вертикальных среднеходных мельниц.
- 47. Особенности конструкции, принцип действия, преимущества и недостатки вертикальных среднеходных мельниц-сушилок.
- 48. Выбор дезинтеграторов для измельчения материалов. Особенности конструкции, принцип действия дезинтеграторов.
- 49. Выбор струйных мельниц для измельчения материалов. Особенности конструкции, принцип действия струйных мельниц.
- 50. Сравните преимущества и недостатки мельниц самоизмельчения Аэрофол и Гидрофол и струйных мельниц.

Раздел 2. Вопрос №2. Максимальная оценка 16 баллов.

- 1. Шаровые мельницы для получения сверхтонкого продукта. Аттриторы. Планетарные мельницы.
- 2. Машины для грубого измельчения глины. Глинорыхлители. Глинорезки. Глинорастиратели.
- 3. Достоинства и недостатки вихревых пылеуловителей. В чем основное отличие ВПУ от ВЗП.
- 4. Порядок смешивания компонентов массы в бегунах и мешалке Айриха при смешивании зернистой массы, шликера и мелкодисперсной глиняной связки.
- 5. Достоинства и недостатки мокрого пылеулавливания. Агрегаты для мокрого пылеулавливания.
- 6. Ленточные, трубные, скребковые и ковшевые транспортеры. Элеваторы. Области применения.
- 7. Виды пневмотранспорта. Особенности работы, достоинства и недостатки.
- 8. Питатели и дозаторы порошковых масс. Достоинства и недостатки объемного и весового дозирования.
- 9. Двухвальные смесители с пароувлажнением и без пароувлажнения.
- 10. Смесительные бегуны и мешалка Айрих. Порядок смешивания шихты, содержащей шамот и глиняный порошок.
- 11. Шликерные мешалки. Принцип работы и области применения.
- 12. Машины для непрерывного распускания глин. Комбинированная дробилка. Мельница-мешалка Сладкова.
- 13. Фильтр-прессы, применяемые в керамической промышленности. Камерные, рамные, мембранные.
- 14. Насосы для перекачивания шликеров (мембранные, героторные, керамические).
- 15. Распылительные сушилки для получения гранулированных керамических порошков.

- 16. Грануляторы и их применение в производстве керамической плитки. Сравните с распылительными сушилками.
- 17. Поршневые и шнековые прессы. Детали шнековых прессов.
- 18. Вакуумные шнековые прессы. Опишите процесс удаления воздуха из пластичной массы.
- 19. Водокольцевые и вакуумные насосы для удаления воздуха из пластичных масс.
- 20. Машины для раскатки. Процессы, происходящие при раскатке.
- 21. Автоматические линии для раскатки на примере линии «Сервис».
- 22. Машины для допрессовки пластичных масс. Пресс Самарина, пресс для формования черепицы.
- 23. Принцип работы коленорычажного пресса. Кривая прессования. Циклограмма.
- 24. Коленорычажные прессы с регулированием давления.
- 25. Гидравлические прессы. Принцип работы.
- 26. Гидравлические прессы. Области их применения.
- 27. Необходимость применения аккумуляторов давления или аксиально-поршневых насосов переменной производительности.
- 28. Зеркальные пресс-формы для прессования керамической плитки.
- 29. Пресс-формы с переносом для прессования керамической плитки.
- 30. Гидростатические пресс-формы для прессования керамической плитки.
- 31. Фрикционные прессы Достоинства, недостатки, области применения.
- 32. Регулирование давления прессования в коленорычажных прессах и во фрикционных прессах?
- 33. Преимущества двухступенчатого и двухстороннего прессования.
- 34. Достоинства и недостатки вибрационного прессования.
- 35. Гидростатическое прессование. Квазиизостатическое прессование.
- 36. Горячее и горячее изостатическое прессование.
- 37. Методы и способы литья из водных шликеров. Их отличия, недостатки, достоинства.
- 38. Требования к водным шликерам для литья.
- 39. Факторы, определяющие скорость набора массы при литье в пористые формы?
- 40. Конвейерные линии для литья санитарно-строительных изделий.
- 41. Сравните основные достоинства и недостатки ручных, механизированных стендов.
- 42. Требования к горячим шликерам. Однобачковая и двухбачкова машины для горячего литья заготовок.
- 43. Получение керамических пленок.
- 44. Производство керамической фанеры. Достоинства и недостатки.
- 45. Формование заготовок методом обточки.
- 46. Способы глазурования заготовок и спеченных изделий. Мокрое и сухое глазурование.
- 47. Сухое электростатическое глазурование.
- 48. Основные методы нанесения рисунков на керамические заготовки.
- 49. Организации, участвующие в проектировании.
- 50. Документы, которыми должен руководствоваться специалист-проектировщик в своей работе.

Раздел 3. Вопрос №3. Максимальная оценка 12 баллов.

- 1. Стекловидное состояние. Его отличие от кристаллического. Ближний и дальний порядок.
- 2. Способы интенсификации стекловарения.
- 3. Структура кристаллического кварца и кварцевого стекла.
- 4. Стеклообразователи и модификаторы. Их положение в структурной сетке стекла.

- 5. Сырьевые компоненты, используемые для производства шихты. Основные компоненты и примеси.
- 6. Приготовление шихты. ДСО. Транспортирование шихты в МВЦ.
- 7. Составы промышленных стекол. Процессы, происходящие при варке стекла.
- 8. Классификация печей стекольного производства. Одногоршковые печи. Температурный режим варки стекла в горшковых печах.
- 9. Классификация печей стекольного производства. Многогоршковые печи. Работа регенераторов.
- 10. Классификация печей стекольного производства. Ванные стекловаренные печи. Расположение загрузчиков у печи.
- 11. Классификация стекловаренных печей. Огнеупоры, используемые для кладки бассейна ванной печи.
- 12. Классификация стекловаренных печей. Конструкция стен пламенного пространства и свода печи. Огнеупоры, используемые для кладки стен и свода печи.
- 13. Классификация стекловаренных печей. Особенности работы электрических печей горизонтального типа. Материал электродов.
- 14. Классификация стекловаренных печей. Особенности работы электрических печей вертикального типа. Материал электродов.
- 15. Вязкость стекол. Влияние состава стекла и температуры на вязкость. Температурная шкала вязкости.
- 16. Длинные и короткие стекла. Влияние состава на длину стекла.
- 17. Стадии формования стеклоизделий. Время формообразования и время фиксации формы. Влияние длины стекла на время формования.
- 18. Температурный режим работы форм. Способы повышения качества поверхности стеклоизделий при формовании.
- 19. Капельное питание машин стекломассой. Устройство и работа фидеров при капельном питании.
- 20. Отжиг. Причины проведения отжига. Печи для отжига. Режим отжига.
- 21. Центробежное формование. Принцип формования. Установка для центробежного формования. Достоинства и недостатки метода.
- 22. Прессование. Области его применения. Работа прессующего механизма.
- 23. Схема получения узкогорлой толстостенной стеклотары.
- 24. Схема получения широкогорлой толстостенной тары.
- 25. Схема получения тонкостенной посуды из стекла.
- 26. Схема получения тонкостенных технических изделий из стекла.
- 27. Питатели стекломассы. Ковшевой питатель, вакуумный питатель, шаровой питатель,
- 28. Рельефный, трещиноватый и нарушенный слои стекла.
- 29. Роль СОЖ в процессе шлифования.
- 30. Износ абразивных зерен шлифовального инструмента.
- 31. Износ связки абразивного инструмента.
- 32. Особенности работы абразива в эластичной связке.
- 33. Подготовка поверхности стекла к полированию.
- 34. Способы полирования поверхности стекла. Их практическая реализация.
- 35. Полировальные порошки. Материалы полировальников.
- 36. Функции связки в абразивном инструменте. Металлическая, бакелитовая и магнезиальная связки.
- 37. Виды абразивов. Влияние размеров абразивных частиц и их концентрации в инструменте на интенсивность шлифования.
- 38. Режимы работы абразивного инструмента (интенсивный износ, нормальный режим, самозатачивание и затупление).
- 39. Особенности полирования ситаллов.

- 40. Гипотезы механического полирования ситаллов.
- 41. Ближний и дальний порядок в структуре силикатов, их реализация для аморфных и кристаллических тел.
- 42. Положение в структурной сетке аморфного материала стеклообразователей и модификаторов.
- 43. Промышленные стекла, используемые для массового производства стеклоизделий, их химические составы.
- 44. Современные ванные стекловаренные печи с газовым отоплением, варианты расположения загрузчиков у них.
- 45. Температурная шкала вязкости. Основные параметры, определяющие вязкость стекол. Понятие «длина» стекла. Влияние химического состава стекла на его длину.
- Работа форм при изготовлении стеклоизделий, их температурный режим. Способы 46. повышения качества поверхности стеклоизделий при формовании.
- 47. Случаи использования капельного питания машин стекломассой. Устройство и работа фидеров при капельном питании.
- 48. Виды изделий из стекла, получаемые методом прессования. Особенности работы прессующего механизма.
- Виды узкогорлых стеклянных изделий, получаемые механизированными способами, 49. производство узкогорлой толстостенной стеклотары.
- 50. Виды широкогорлых стеклянных изделий, получаемые механизированными способами, производство широкогорлой толстостенной тары.

8.3. Структура и пример билетов для проведения зачета с оценкой

Зачет по дисциплине «Оборудование для реализации ТХОМ» включает контрольные вопросы по всем разделам учебной программы дисциплины. Билет для зачета с оценкой включает 3 вопроса, относящиеся к разным разделам курса. Ответы на вопросы билета оцениваются из 40 баллов следующим образом. Первый и третий вопросы билета относятся к разделам 1 и 3 и в соответствии с объемом входящего в них материала оцениваются максимально в 12 баллов. Второй вопрос включает больше материала и оценивается максимально в 16 баллов.

Пример билета для проведения зачета с оценкой

«Утверждаю»	Министерство науки и высшего образования РФ	
Зав каф. ОТС	Российский химико-технологический университет	
- 	им. Д.И. Менделеева	
А.И. Захаров	Бакалавриат. Направление подготовки 29.03.04 «Технология	
	художественной обработки материалов».	
дата	Профиль подготовки «Технология художественной обработки	
	материалов».	
Оборудование для реализации ТХОМ		
	Ендот инд нородония зоното № 3	

Билет для поведения зачета № 3

- 1. Классификация оборудования для измельчения материалов.
- 2. Шаровые мельницы для получения сверхтонкого продукта. Аттриторы. Планетарные мельницы.
- 3. Стекловидное состояние. Его отличие от кристаллического. Ближний и дальний порядок.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

9.1 Рекомендуемая литература

А) Основная литература

- 1. Толстой, А. Д. Технологические процессы и оборудование предприятий строительных материалов : учебное пособие / А. Д. Толстой, В. С. Лесовик. Санкт-Петербург : Лань, 2015. 336 с. ISBN 978-5-8114-1847-3. —Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/64342 (дата обращения: 18.03.2020). Режим доступа: для авториз. пользователей.
- 2. Беляков А. В. Оборудование для измельчения в технологии керамики: учеб. пособие // А. В. Беляков. М.: РХТУ им. Д. И. Менделеева, 2019. 96 с. ISBN 978 5 7237 1630 8.

Б) Дополнительная литература:

- 1. Белецкий, Б. Ф. Строительные машины и оборудование : 3-е изд., стер. / Б. Ф. Белецкий, И. Г. Булгакова Санкт-Петербург : Лань, 2012. 608 с. ISBN 978-5-8114-1282-2. —Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/64342 (дата обращения: 18.03.2020). Режим доступа: для авториз. пользователей.
- 2. Технология стекла: справочные материалы/ под ред. П. Д. Саркисова. М.: ИПК Чувашия, 2012. 648 с.

9.2. Рекомендуемые источники научно-технической информации

- Реферативный журнал «Химия» (РЖХ), серия М «Технология силикатных и тугоплавких неметаллических материалов». ISSN: 0235-2206
- Ж. Стекло и керамика. ISSN: 01319582
- Ж. Новые огнеупоры. ISSN: 16834518
- Ж. Огнеупоры и техническая керамика. ISSN: 03697290
- Ж. Техника и технология силикатов. ISSN: 20760655
- Политематические базы данных (БД): США: CAPLUS; COMPENDEX; Великобритания: INSPEC; Франция: PASCAL.
- Pecypcы ELSEVIER: www.sciencedirect.com.
- http://www.strommash.ru/

Сайт завода Строммашина, г. Самара, РФ.

Дробильно-размольное оборудование, шаровые мельницы; линии для производства микропорошков; обеспыливающее оборудование; оборудование и технологический комплекс для производства керамзита; транспортирующее оборудование; сушильное и обжиговое оборудование.

– http://www.stromrzn.ru/

ОАО Ухоловский завод Строммашина, РФ, Рязанская область, р.п. Ухолово.

Оборудование для изготовления кирпича; дробильное оборудование: дробилка – дробилка молотковая, щековая, валковая.

- http://dso44.ru/

Завод "Строммашина" (Кострома), РФ, г. Кострома. Дробилки, грохоты инерционные, питатели пластинчатые, бункер-питатели, линии, конвейеры.

http://www.strommashina.mogilev.by/

ОАО «Могилевский завод «СТРОММАШИНА», Республика Беларусь, г. Могилев.

Оборудование для изготовления керамического и огнеупорного кирпича

– http://pat-zavod-strommashina.uaprom.net/

ПАТ "Завод "Строммашина", г. Хмельницкий, Хмельницкая область, Украина.

Оборудование для заводов по производству керамического кирпича мощностью от 15 до 30 млн. штук кирпича в год.

http://www.dorst.de/dorst_seite/index-eng.html

Оборудование фирмы Дорст

- http://www.sacmi.com/Gruppo01SearchResult.aspx?q=equipment&ln=en-US

Сайт фирмы Сакми

www.sacmiimpianti.com

Производство оборудования для керамической промышленности

– http://www.khs.com/en/

Сайт корпорации КНЅ

http://www.sima-italy.com/

SIMA S.r.l. - оборудование для перемещения

http://www.ostec-micro.ru/equipment/podgroup/19.html

Оборудование для производства электронной керамики

www.castellarano.net

Castellarano Officine tecnologiche S.p.A. - оборудование для смешивания и подголовки сырья – www.stmimpianti.com

STM & C. Sas - производство и продажа оборудования и приспособлений для подготовки сырья в керамической промышленности

– Прессы:

http://www.a-filter.ru/kamernyj_ramnyj_press_filtr

http://hydropark.ru/equipment/press_filter.htm

http://pto64.ru/base/view_p22/1005

http://tiu.ru/p21039606-filtr-pressy-ramnye.html

http://zerno-ek.com/?page=catalog&cat=111

http://download.topbiz.com.ua/upload/6609/623.pdf

http://www.rktp-trade.ru/?page_id=2120

9.3. Средства обеспечения освоения дисциплины

Для реализации рабочей программы подготовлены следующие средства обеспечения освоения дисциплины:

- компьютерные презентации интерактивных лекций 12;
- комплекты образцов керамических, стеклообразных, вяжущих, композиционных материалов -4;
- банк тестовых заданий для текущего контроля освоения дисциплины (общее число вопросов 360);
- банк тестовых заданий для итогового контроля освоения дисциплины (общее число вопросов – 120).

При переходе на дистанционное и электронное обучение подготовлены следующие средства обеспечения освоения дисциплины:

- компьютерные презентации интерактивных лекций 12;
- комплекты фотографий образцов керамических, стеклообразных, вяжущих, композиционных материалов -4;
- банк тестовых заданий для текущего контроля освоения дисциплины (общее число вопросов 360);
- банк тестовых заданий для итогового контроля освоения дисциплины (общее число вопросов 120).

При переходе на дистанционное и электронное обучение предполагается использование следующих образовательных технологий: ЭИОС, Zoom.

Для освоения дисциплины используются следующие нормативные и нормативнометодические документы (обновить даты обращения):

- Федеральный закон Российской Федерации от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации» [Электронный ресурс] Режим доступа: http://pravo.gov.ru/proxy/ips/?docbody=&nd=102162745&intelsearch=273-%D4%C7 (дата обращения: 20.05.2020).
- Федеральные государственные образовательные стандарты высшего образования // Координационный совет учебно-методических объединений и научно-методических советов высшей школы. Портал Федеральных образовательных стандартов высшего образования [Электронный ресурс] Режим доступа: http://fgosvo.ru/fgosvo/92/91/4 (дата обращения: 20.05.2020).
- Приказ Министерства образования и науки РФ от 23.08.2017 № 816 «Об утверждении Порядка применения организациями, осуществляющими образовательную деятельность, электронного обучения, дистанционных образовательных технологий при реализации образовательных программ» [Электронный ресурс]. Режим доступа: http://pravo.gov.ru/proxy/ips/?docbody=&nd=102447332&intelsearch=816+%EF%F0%E8%EA%E0%E7 (дата обращения: 20.05.2020).

При освоении дисциплины студенты должны использовать информационные и информационно-образовательные ресурсы следующих порталов и сайтов:

- Система федеральных образовательных порталов. Система открытого образования. Консалтинговый центр ИОС ОО РФ [Электронный ресурс] Режим доступа: http://www.openedu.ru (дата обращения: 20.05.2020).
- Информационная система «Единое окно доступа к образовательным ресурсам». URL: http://window.edu.ru/ (дата обращения: 20.05.2020).
- ФЭПО: соответствие требованиям ФГОС [Электронный ресурс] Режим доступа: http://i-exam.ru/ (дата обращения: 20.05.2020).

10. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ОБУЧАЮЩИХСЯ

10.1. Для студентов, обучающихся без использования дистанционных образовательных технологий

Методические рекомендации по организации учебной работы студента направлены на повышение ритмичности и эффективности его аудиторной и самостоятельной работы по курсу.

Дисциплина «Оборудование для реализации ТХОМ» включает 3 раздела, каждый из которых имеет определенную логическую завершенность. При изучении материала раздела рекомендуется регулярное повторение законспектированного лекционного материала, а также дополнение его сведениями из литературных источников, представленных в учебной программе. При работе с указанными источниками конспект с обязательным рекомендуется составлять краткий фиксированием библиографических источника. Изучение материала каждого данных заканчивается контролем его освоения в форме контрольной работы. Результаты выполнения контрольных работ оцениваются в соответствии с принятой в университете рейтинговой системой оценки знаний. За ответы на вопросы практических занятий предусмотрено 20 баллов. Для контроля усвоения материала предусмотрено 4 контрольных работы максимально по 10 баллов за каждую. Общая сумма за все контрольные работы 40

баллов. Каждая контрольная работа содержит два вопроса. Максимальная оценка за каждый вопрос 5 баллов. Контрольные работы охватывают все разделы.

Совокупная оценка текущей работы студента в семестре складывается из оценок за ответы на вопросы практических занятий (20 баллов) и за выполнение 4-х контрольных работ (40 баллов). Максимальная оценка текущей работы в семестре составляет 60 баллов. В соответствии с учебным планом изучение дисциплины завершается итоговым контролем в форме зачета с оценкой. Максимальная оценка зачета составляет 40 баллов. В зачет входит 3 вопроса, по одному вопросу из каждого раздела. Вопрос 1 оценивают максимально по 14 баллов, а вопросы 2 и 3 по 13 баллов за каждый.

Общая оценка результатов освоения дисциплины складывается из числа баллов, набранных в семестре (контрольные работы) и на зачете. Максимальная общая оценка всей дисциплины составляет 100 баллов.

10.2. Для студентов, обучающихся с использованием дистанционных образовательных технологий

При использовании электронного обучения и дистанционных образовательных технологий занятия полностью или частично проводятся в режиме онлайн. Объем дисциплины и распределение нагрузки по видам работ соответствует п. 4.1. Распределение баллов соответствует п. 10.1 либо может быть изменено в соответствии с решением кафедры, в случае перехода на ЭО и ДОТ в процессе обучения. Решение кафедры об используемых технологиях и системе оценивания достижений обучающихся принимается с учетом мнения ведущего преподавателя и доводится до обучающихся.

11. МЕТОДИЧЕСКИЕ УКАЗАНИЯ ДЛЯ ПРЕПОДАВАТЕЛЕЙ

11.1. Для преподавателей, реализующих образовательные программы без использования дистанционных образовательных технологий

Дисциплина «Оборудование для реализации ТХОМ» включает 3 раздела, и самостоятельную подготовку по этим разделам.

При подготовке и проведении занятий преподаватель должен ориентироваться на то, что студенты, обучающиеся в бакалавриате, имеют общую подготовку по общенаучным дисциплинам, в объеме, предусмотренном учебным планом бакалавриата, а также опыт восприятия и конспектирования изучаемого материала. В связи с этим материал дисциплины должен опираться на полученные знания и быть ориентирован их расширение и углубление в соответствии с современными теоретическими представлениями и технологическими новациями. Обучение студентов может быть организовано как в виде традиционных лекций и практических занятий, так и научной дискуссии, которая помогает приобрести навыки и умения обосновывать круг рассматриваемых вопросов, формулировать главные положения, определения и практические выводы из теоретических положений. На занятиях должна прослеживаться взаимосвязь рассматриваемых вопросов с ранее изученным материалом.

Основной задачей преподавателя, ведущего занятия по дисциплине «Процессы и аппараты химической технологии», является формирование у студентов компетенций в области инженерии химических производств. Преподаватель должен акцентировать внимание студентов на общих вопросах химической технологии. При выборе материала для занятий желательно обращаться к опыту ведущих зарубежных и отечественных научно-исследовательских центров, научно-производственных фирм и предприятий, использовать их научные, информационные и рекламные материалы и проводить их сравнительный анализ.

Наиболее сложные теоретические материалы ведущим преподавателям рекомендуется излагать на лекциях с использованием средств мультимедийной техники и обеспечением необходимым раздаточным материалом. После изложения лекций теоретический материал необходимо закреплять решением примеров и задач на практических занятиях.

После проведения каждого практического занятия преподавателям рекомендуется выдать обучающимся дополнительные задания для закрепления полученных практических навыков в ходе последующего самостоятельного изучения разделов дисциплины.

Экзамен по дисциплине «Процессы и аппараты химической технологии» является итоговой формой контроля знаний. Экзамен проводится в устной форме по билетам. Время, отводимое на подготовку к ответу для каждого студента, составляет в среднем 1 час.

В билет включается два теоретических вопроса, охватывающие различные разделы изучаемого материала, вопрос по конструкциям оборудования и задача. Тематически вопросы и задания, включаемые в билет, направлены на итоговую оценку знаний, умений и навыков, полученных студентами при изучении данной дисциплины.

11.2. Для преподавателей, реализующих образовательные программы с использованием дистанционных образовательных технологий

При использовании электронного обучения и дистанционных образовательных технологий занятия полностью или частично проводятся в режиме онлайн. Объем дисциплины и распределение нагрузки по видам работ соответствует п. 4.1. Распределение баллов соответствует п. 10, либо может быть изменено в соответствии с решением кафедры, в случае перехода на ЭО и ДОТ в процессе обучения. Решение кафедры об используемых технологиях и системе оценивания достижений обучающихся принимается с учетом мнения ведущего преподавателя и доводится до обучающихся.

Реализация ЭО и ДОТ предполагает использование следующих видов и учебной деятельности: онлайн консультации, практические занятия, видео-лекции; лабораторные работы, проводимые полностью или частично с применением ЭО и ДОТ; текущий контроль в режиме тестирования и проверки домашних заданий; онлайн консультации по курсовому проектированию; самостоятельная работа и др.

При реализации РПД в зависимости от конкретной ситуации ЭО и ДОТ могут быть применены в следующем виде:

- объем часов контактной работы обучающихся с преподавателем не сокращается) и электронные образовательные ресурсы (ЭОР) методически обеспечивают самостоятельную работу обучающихся в объеме, предусмотренном рабочей программой данной дисциплины. При этом в случае необходимости занятия проводятся в режиме онлайн;
- смешанные формы обучения, сочетающие в себе аудиторные занятия (при возможности перевода части контактных часов работы обучающихся с преподавателем в электронную информационно-образовательную среду без потери содержания учебной дисциплины) и ЭОР (часть учебного материала (например, лекции) может быть заменена ЭОР);
- учебные курсы, интегрированные в LMS Moodle, контактные часы по которым могут быть исключены, изучаются обучающимися самостоятельно при минимальном участии преподавателя (консультации в режиме форума или в режиме вебинара).

12. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ В ОБРАЗОВАТЕЛЬНОМ ПРОЦЕССЕ

Информационно-библиотечный центр (ИБЦ) РХТУ им. Д.И. Менделеева обеспечивает информационную поддержку всем направлениям деятельности университета, содействует подготовке высококвалифицированных специалистов, совершенствованию учебного процесса, научно-исследовательской работы, способствует развитию профессиональной культуры будущего специалиста.

Фонд ИБЦ располагает учебной, учебно-методической и научно-технической литературой в форме печатных и электронных изданий, а также включает официальные, справочно-библиографические, специализированные отечественные и зарубежные периодические и информационные издания. ИБЦ обеспечивает доступ к профессиональным базам данных, информационным, справочным и поисковым системам.

Каждый обучающийся обеспечен свободным доступом из любой точки, в которой имеется доступ к сети Интернет и к электронно-библиотечной системе (ЭБС) Университета, которая содержит различные издания по основным изучаемым дисциплинам и сформирована по согласованию с правообладателями учебной и учебно-методической литературы.

Для более полного и оперативного справочно-библиографического и информационного обслуживания в ИБЦ реализована технология Электронной доставки документов.

13. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

13.1. Оборудование, необходимое в образовательном процессе:

Лекционная учебная аудитория, оборудованная электронными средствами демонстрации (компьютер со средствами звуковоспроизведения, проектор, экран) и учебной мебелью; учебная аудитория для проведения практических занятий, оборудованная электронными средствами демонстрации; библиотека, имеющая рабочие компьютерные места для обучающихся, оснащенные компьютерами с доступом к базам данных и выходом в Интернет.

13.2. Учебно-наглядные пособия:

Комплекты плакатов к разделам лекционной части дисциплины; плакаты диаграмм состояния тугоплавких неорганических и силикатных систем; комплекты колебательных спектров и спектров люминесценции ВФМ; наборы образцов тугоплавких неорганических и силикатных материалов; демонстрационные изделия из силикатных материалов.

13.3 Компьютеры, информационно-телекоммуникационные сети, аппаратно-программные и аудиовизуальные средства:

Персональные компьютеры, укомплектованные проигрывателями CD и DVD, принтерами и программными средствами; проекторы и экраны; цифровые камеры; копировальные аппараты; локальная сеть с выходом в Интернет.

13.4. Печатные и электронные образовательные и информационные ресурсы:

Информационно-методические материалы: учебные пособия по дисциплине; раздаточный материал к разделам лекционной части дисциплины; раздаточный материал к практическим занятиям по дисциплине; альбомы и рекламные проспекты с основными видами и характеристиками ВФМ.

Электронные образовательные ресурсы: электронные презентации к разделам лекционной части дисциплины; учебно-методические разработки в электронном виде; справочные материалы в печатном и электронном виде по строению и свойствам

тугоплавких неорганических веществ; электронная картотека по рентгенофазовому анализу; электронная картотека по фазовым диаграммам состояния тугоплавких соединений; кафедральные библиотеки электронных изданий.

13.5. Перечень лицензионного программного обеспечения:

№ п.п.	Наименование программного продукта	Реквизиты договора поставки	Количество лицензий	Срок окончания действия лицензии
1.	Calculate Linux Desktop	Свободно распространяемое ПО	Не ограниченно	Бессрочно
2.	LibreOffice	Свободно распространяемое ПО	Не ограниченно	Бессрочно
3.	ABBYY FineReader	Свободно распространяемое ПО	Не ограниченно	Бессрочно
4.	7-Zip	Свободно распространяемое ПО	Не ограниченно	Бессрочно
5.	Google Chrome	Свободно распространяемое ПО	Не ограниченно	Бессрочно
6.	VLC Media Player	Свободно распространяемое ПО	Не ограниченно	Бессрочно
7.	Discord	Свободно распространяемое ПО	Не ограниченно	Бессрочно
8.	Autodesk AutoCAD	Свободно распространяемое ПО	Не ограниченно	Бессрочно
9.	IntellIJIDEA	Свободно распространяемое ПО	Не ограниченно	Бессрочно
10.	FreeCAD	Свободно распространяемое ПО	Не ограниченно	Бессрочно
11.	SMath Studio	Свободно распространяемое ПО	Не ограниченно	Бессрочно
12.	Corel Academic Site Standard	Контракт № 90- 133ЭА/2021 от 07.09.2021	Лицензия для активации на рабочих станциях, покрывает все рабочие места в университете	12 месяцев (ежегодное продление подписки с правом перехода на обновлённую версию продукта)
13.	Kaspersky Endpoint Security для бизнеса – Стандартный Russian Edition.	Контракт № 90- 133ЭА/2021 от 07.09.2021	500 лицензий	12 месяцев (ежегодное продление подписки с правом перехода на обновлённую версию продукта)
14.	GIMP	Свободно распространяемое ПО	Не ограниченно	Бессрочно
15.	OBS (Open Broadcaster Software) Studio	Свободно распространяемое ПО	Не ограниченно	Бессрочно

14. ТРЕБОВАНИЯ К ОЦЕНКЕ КАЧЕСТВА ОСВОЕНИЯ ПРОГРАММ

Наименование разделов	Основные показатели оценки	Формы и методы контроля и оценки
Раздел 1.	Знает:	Оценка за
Введение. Оборудование для измельчения и	классификацию основных видов оборудования для реализации ТХОМ; принципы работы, достоинства и недостатки	контрольную работу № 1.
смешивания.	основных типов оборудования для	Оценка на
Оборудование для	промышленного и индивидуального	практических
получения изделий из	производства художественных изделий из стекла, керамики и вяжущих материалов;	занятиях.
вяжущих материалов	основные виды печного оборудования для производства изделий из стекла, керамики и вяжущих материалов;	Оценка за зачет
	основы компоновочных решений	
	технологического оборудования и механизации транспортных операций по цехам и участкам всего производства. Умеет:	
	определять оборудование, оснастку и	
	инструмент, необходимые для проведения	
	технологических процессов, как в	
	промышленном масштабе, так и на	
	индивидуальном уровне при производстве	
	художественных изделий из стекла, керамики	
	и вяжущих материалов	
	Владеет:	
	методами сбора и обработки информации об	
	основном оборудовании, обеспечивающем	
	высокое качество художественных изделий из	
	стекла, керамики и вяжущих материалов,	
	повышении производительности труда и	
	культуры производства, уменьшении	
	загрязнения окружающей среды, о тенденциях	
	совершенствования оборудования.	
Раздел 2.	Знает:	Оценка за
Подраздел 2.1.	классификацию основных видов оборудования	контрольную
Специфическое	для реализации TXOM;	работу № 2.
оборудование для	принципы работы, достоинства и недостатки	
подготовки	основных типов оборудования для	Оценка на
формовочных	промышленного и индивидуального	практических
масс,	производства художественных изделий из	занятиях.
оборудование для	стекла, керамики и вяжущих материалов;	
изготовления	основные виды печного оборудования для	Оценка за зачет
изделий способом	производства изделий из стекла, керамики и	
пластического	вяжущих материалов;	
формования.	основы компоновочных решений	
	технологического оборудования и	

механизации транспортных операций по цехам и участкам всего производства. Умеет: определять оборудование, оснастку и инструмент, необходимые для проведения технологических процессов, как в промышленном масштабе, так и на индивидуальном уровне при производстве художественных изделий из стекла, керамики и вяжущих материалов Владеет: методами сбора и обработки информации об основном оборудовании, обеспечивающем высокое качество художественных изделий из стекла, керамики и вяжущих материалов, повышении производительности труда и культуры производства, уменьшении загрязнения окружающей среды, о тенденциях совершенствования оборудования. Раздел 2. Знает: Оценка за Подраздел 2.2. классификацию основных видов оборудования контрольную Оборудование для для реализации ТХОМ; работу № 3. прессования принципы работы, достоинства и недостатки основных типов оборудования для изделий из Оценка на порошкообразных промышленного и индивидуального практических масс, литья производства художественных изделий из занятиях. керамических стекла, керамики и вяжущих материалов; Оценка за зачет изделий, основные виды печного оборудования для производства изделий из стекла, керамики и формования методом обточки, вяжущих материалов; глазурования и основы компоновочных решений нанесения технологического оборудования и механизации транспортных операций по цехам рисунка. Основы проектирования. и участкам всего производства. Умеет: определять оборудование, оснастку и инструмент, необходимые для проведения технологических процессов, как в промышленном масштабе, так и на индивидуальном уровне при производстве художественных изделий из стекла, керамики и вяжущих материалов Владеет: методами сбора и обработки информации об основном оборудовании, обеспечивающем высокое качество художественных изделий из стекла, керамики и вяжущих материалов, повышении производительности труда и культуры производства, уменьшении загрязнения окружающей среды, о тенденциях совершенствования оборудования.

Раздел 3.	Знает:	Оценка за
Оборудование и	классификацию основных видов оборудования	контрольную
технологии для	для реализации ТХОМ;	работу № 4.
производства	принципы работы, достоинства и недостатки	paoory 312 4.
-		Orranna ma
изделий из стекла	основных типов оборудования для	Оценка на
и механической	промышленного и индивидуального	практических
обработки	производства художественных изделий из	занятиях.
силикатных	стекла, керамики и вяжущих материалов;	
материалов	основные виды печного оборудования для	Оценка за зачет
	производства изделий из стекла, керамики и	
	вяжущих материалов;	
	основы компоновочных решений	
	технологического оборудования и	
	механизации транспортных операций по цехам	
	и участкам всего производства.	
	Умеет:	
	определять оборудование, оснастку и	
	инструмент, необходимые для проведения	
	технологических процессов, как в	
	промышленном масштабе, так и на	
	индивидуальном уровне при производстве	
	художественных изделий из стекла, керамики	
	и вяжущих материалов	
	Владеет:	
	методами сбора и обработки информации об	
	основном оборудовании, обеспечивающем	
	высокое качество художественных изделий из	
	стекла, керамики и вяжущих материалов,	
	повышении производительности труда и	
	культуры производства, уменьшении	
	загрязнения окружающей среды, о тенденциях	
	совершенствования оборудования.	
	tobephienerbobumin ocopygobumin.	

15. ОСОБЕННОСТИ ОРГАНИЗАЦИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ИНВАЛИДОВ И ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

Обучение инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с:

- Порядком организации и осуществления образовательной деятельности по образовательным программам – программам бакалавриата, программам специалитета, программам магистратуры (Приказ Минобрнауки РФ от 05.04.2017 № 301);
- Положением о порядке организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры в РХТУ им. Д.И. Менделеева, принятым решением Ученого совета РХТУ им. Д.И. Менделеева от 30.10.2019, протокол № 3, введенным в действие приказом ректора РХТУ им. Д.И. Менделеева от 14.11.2019 № 646А;
- Методическими рекомендациями по организации образовательного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья в образовательных организациях высшего образования, в том числе оснащенности образовательного процесса (утверждены заместителем Министра образования и науки РФ А.А. Климовым от 08.04.2014 № АК-44/05вн).

Дополнения и изменения к рабочей программе дисциплины «Оборудование для реализации ТХОМ»

основной образовательной программы высшего образования — программы бакалавриата

по направлению подготовки

29.03.04 Технология художественной обработки материалов

код и наименование направления подготовки (специальности)

Профиль «Технология художественной обработки материалов».

наименование профиля

Форма обучения: очная

Номер изменения/ дополнения	Содержание дополнения/изменения	Основание внесения изменения/дополнения