Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Российский химико-технологический университет имени Д. И. Менделеева»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Физические и химические свойства наноматериалов и наносистем»

Направление подготовки 28.04.03 Наноматериалы

Магистерская программа «Химическая технология наноматериалов» Квалификация «магистр»

РАССМОТРЕНО И ОДОБРЕНО

На заседании Методической комиссии Ученого совета

РХТУ им. Д.И. Менделеева «<u>25</u>» мая 2021 г.

Председатель

Н.А. Макаров

Москва 2021

1. ЦЕЛЬ И ЗАДАЧИ ДИСЦИПЛИНЫ

Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования — магистратура по направлению подготовки 28.04.03 «Наноматериалы», рекомендациями Методической комиссии и накопленным опытом преподавания дисциплины кафедрой наноматериалов и нанотехнологии РХТУ им. Д.И. Менделеева. Программа рассчитана на изучение дисциплины в течение 1 семестра.

Дисциплина «Физические и химические свойства наноматериалов и наносистем» относится к блоку обязательных дисциплин учебного плана. Программа дисциплины предполагает, что обучающиеся имеют теоретическую и практическую подготовку в области физической и коллоидной химии.

Цель дисциплины - приобретение знаний, умений, владений и формирование компетенций в области теории и практики использования нанотехнологий и создания наноматериалов, свойств наноматериалов, их перспективных областей применения и направлений дальнейшего развития.

Задачи дисциплины: формирование у обучающихся системных глубоких знаний в области физических и химических процессов и технологии функциональных неорганических и органических наноматериалов, понимания общих физических и химических механизмов создания наноматериалов, способности анализировать и критически оценивать получаемые наноматериалы, предлагать пути дальнейшего развития химической технологии наноматериалов.

Дисциплина «Физические и химические свойства наноматериалов и наносистем»» рассчитана на изучение дисциплины в 1 и 2 семестре обучения. Контроль успеваемости студентов ведется по принятой в университете рейтинговой системе.

Рабочая программа дисциплины может быть реализована с применением электронных образовательных технологий и электронного обучения полностью или частично.

2. ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Изучение дисциплины направлено на приобретение следующих компетенций и индикаторов их достижения:

Универсальные компетенции и индикаторы их достижения

Наименование категории (группы) УК	Код и наименование УК	Код и наименование индикатора достижения УК
Системное и критическое мышление	УК-1. Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	УК-1.2. Систематизирует информацию, полученную из разных источников, в соответствии с требованиями выполнения учебного задания;
Командная работа и лидерство	УК-3. Способен организовывать и руководить работой команды, вырабатывая командную стратегию для достижения поставленной цели	УК-3.2. Подготавливает и представляет презентации планов и результатов собственной и командной деятельности.

Коммуникация	УК-4. Способен применять	УК-4.2. Использует русский и
	современные коммуникативные	иностранный языки как средство
	технологии, в том числе на	делового общения, четко и ясно
	иностранном(ых) языке(ах), для	излагает проблемы и решения,
	академического и	аргументирует выводы.
	профессионального	
	взаимодействия	

Обшепрофессиональные компетениии и индикаторы их достижения:

Оощепрофессі	Общепрофессиональные компетенции и индикаторы их достижения:							
Наименование категории (группы) ОПК	Код и наименование ОПК	Код и наименование индикатора достижения ОПК						
Применение	ОПК-1. Способен ставить	ОПК-1.3. Использует физико-						
фундаментальных	и решать инженерные и	химический подход для описания,						
знаний в	научно-технические	анализа, теоретического и						
профессиональной	задачи в области	экспериментального исследования и						
деятельности	получения и исследования	моделирования процессов синтеза и						
	наноматериалов и новых	исследования наноматериалов;						
	междисциплинарных	ОПК-1.4. Использует прикладные						
	направлений с	программы и средства						
	использованием	автоматизированного проектирования						
	естественнонаучных и	при решении инженерных задач.						
	математических моделей							
Исследовательская	ОПК-4. Способен	ОПК-4.1. Составляет план научно-						
деятельность	выполнять исследования	исследовательской деятельности,						
деятельность	при решении инженерных	включая литературный поиск, сроки и						
	и научно-технических	последовательность						
	задач, включая	экспериментальной работы,						
	планирование и	обсуждения и анализа результатов;						
	постановку сложного	ОПК-4.2. Формирует						
	эксперимента,	демонстрационный материал и						
	критическую оценку и	представляет результаты своей						
	интерпретацию	исследовательской деятельности на						
	результатов	научных конференциях, во время						
	Freymon	промежуточных и итоговых						
		аттестаций.						
Использование	ОПК-5. Способен	ОПК-5.1. Проводит патентный поиск						
информационных	использовать	в профессиональной области;						
технологий	инструментарий	ОПК-5.2. Определяет перечень						
	формализации	ресурсов и программного обеспечения						
	инженерных, научно-	для использования в						
	технических задач,	профессиональной деятельности с						
	прикладное программное	учетом требований информационной						
	обеспечение для	безопасности.						
	моделирования и							
	проектирования объектов,							
	систем и процессов							
Разработка	ОПК-7. Способен	ОПК-7.1. Использует техническую и						
нормативной	разрабатывать и	справочную литературу, нормативные						
документации	актуализировать научно-	документы при выполнении						
	техническую	исследовательской работы в области						

документацию в области	технологии и методов диагностики
получения	наноматериалов
наноматериалов	

В результате изучения дисциплины студент магистратуры должен: Знать:

- современные научные достижения и перспективные направления работ в области физических и химических свойств наноматериалов;
- современные представления о физико-химических механизмах и процессах, протекающих при использовании наноматериалов;
- физико-химические способы управления свойствами наноматериалов, модификации наноматериалов;
- прогнозирование развития функциональных наноматериалов на основе их физических и химических свойств.

Уметь:

- проводить анализ научно-технической информации, в области физических и химических свойств наноматериалов;
- определять эффективные физико-химические методы создания новых функциональных наноматериалов с комплексом заданных свойств для конкретных областей применения;
- применять теоретические знания физико-химических свойств современных и перспективных наноматериалов для решения исследовательских и прикладных задач, в том числе в междисциплинарных областях.

Владеть:

- навыками работы с научно-технической, справочной литературой и электронными ресурсами, затрагивающими фундаментальные и практические аспекты создания современных наноматериалов;
- способностью к критическому анализу и оценке современных научных достижений, выявлению проблем и формулированию подходов для решения исследовательских и практических задач в области нанотехнологии и наноматериалов.
- методами работы с научно-технической, справочной литературой и электроннобиблиотечными ресурсами по теоретическим и технологическим аспектам физикохимических свойств и химической технологии наноматериалов;
- навыками нахождения и использования справочных литературных данных и компьютерных баз данных по составу, структуре и физико-химическим свойствам основных типов функциональных и конструкционных наноматериалов.

3. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

	Всего		Семестр				
Deve versagers in a factory			1 семестра		2 ce	местра	
Вид учебной работы	3E	Акад. ч.	3E	Акад. ч.	3E	Акад. ч.	
Общая трудоемкость дисциплины	10	360	6	216	4	144	
Контактная работа – аудиторные занятия:	3,31	119	1,89	68	1,42	51	
в том числе в форме практической подготовки	-	-	-	-	-	-	
Лекции	1,42	51	0,94	34	0,48	17	

в том числе в форме практической подготовки	-	-	-	-	-	-
Практические занятия (ПЗ)	1,89	68	0,94	34	0,94	34
в том числе в форме практической подготовки	-	-	-	-	-	-
Самостоятельная работа	4,69	169	3,11	112	1,58	57
Контактная самостоятельная работа	-	-	-	-	-	-
Самостоятельное изучение разделов дисциплины	4,69	169	3,11	112	1,58	57
Виды контроля:						
Экзамен	2	72	1	36	1	36
Контактная работа – промежуточная аттестация	2	71,2	1	35,6	1	35,6
Подготовка к экзамену.		0,8		0,4		0,4
Вид итогового контроля:			Экз	амен	Эк	замен

	Всего		Семестр				
Вид учебной работы		DCCIO		1 семестра		местра	
вид учеоной расоты	3E	Астр. ч.	3E	Астр. ч.	3E	Астр. ч.	
Общая трудоемкость дисциплины	10	270	6	162	4	108	
Контактная работа – аудиторные	3,31	89	1,89	51	1,42	38	
занятия:	3,31	89	1,09	31	1,42	36	
в том числе в форме практической							
подготовки						-	
Лекции	1,42	38	0,94	25	0,48	13	
в том числе в форме практической			_		_	_	
подготовки		_	_	_		-	
Практические занятия (ПЗ)	1,89	51	0,94	26	0,94	25	
в том числе в форме практической			_			_	
подготовки		_	_	_		-	
Самостоятельная работа	4,69	127	3,11	84	1,58	43	
Контактная самостоятельная работа	-	-	-	-	-	-	
Самостоятельное изучение разделов	4,69	127	3,11	84	1,58	43	
дисциплины	4,09	12/	3,11	04	1,50	43	
Виды контроля:							
Экзамен	2	54	1	27	1	27	
Контактная работа – промежуточная		0,6		0,3		0,3	
аттестация	2	0,0	1		1	0,5	
Подготовка к экзамену.		53,4		26,7		26,7	
Вид итогового контроля:			Экз	амен	Эк	замен	

4. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Разделы дисциплины и виды занятий

1 семестр.

ii.		Академ. часов					
№ п.п.	Раздел дисциплины	Всего	Лекции	Прак. зан.	Сам. работа		
1	Раздел 1.	88	16	16	56		
1.1	Введение. Современное состояние, проблемы и перспективы развития нанотехнологии и наноматериалов.	26	4	4	18		
1.2	Наноматериалы в электронике.	26	4	4	18		
1.3	Физико-химические основы получения нанопорошков, наноструктур и консолидированных наноматериалов.	36	8	8	20		
2	Раздел 2.	92	18	18	56		
2.1	Композиционные наноматериалы.	36	8	8	20		
2.2	Механические свойства наноматериалов.	30	6	6	18		
2.3	Адгезия наноматериалов на различных поверхностях.	26	4	4	18		
	Экзамен	36					

2 семестр.

ij			Академ. ч	асов	
№ п.п.	Раздел дисциплины	Всего	Лекции	Прак. зан.	Сам. работа
3	Раздел 3.	56	9	17	30
3.1	Пористые наноматериалы.	18	2	6	10
3.2	Мембраны и мембранные процессы.	18	2	6	10
3.3	Диффузия по межфазным границам.	17	2	5	10
4	Раздел 4.	52	8	17	27
4.1	Особенности магнитных свойств наноматериалов.	20	3	7	10
4.2	Химия нанокластеров.	19	3	6	10
4.3	Наномащины и наноустройства.	13	2	4	7
	Экзамен	36			
	Всего часов	360	51	68	169

4.2. Содержание разделов дисциплины

1 семестр.

Раздел 1.

Введение. Современное состояние, проблемы И перспективы развития нанотехнологии и наноматериалов. История развития науки о наноматериалах и нанотехнологии. Вклад отечественных ученых. Особые физические и химические свойства нанообъектов и наноструктурированных систем. Размерный Зависимость свойств от размера структурных элементов материала (частиц, кластеров, зерен) и проявление размерного эффекта. Особенности диффузионно-кинетических процессов в гетерофазных системах с наноструктурами. Способы стабилизации наночастиц. Размерные эффекты в кинетике.

- 1.2. Наноматериалы в электронике. Полупроводниковые наноструктуры: квантовые ямы, нити и точки. Особенности поведения электрона в наноструктурах. Получение и применение квантовых точек. Эпитаксия. Механизмы образования квантовых точек. Сверхрешетки. Формирование полупроводниковых интегральных микросхем (ИМС). Литография. Квантовый транзистор. Квантовый лазер. Квантовый компьютер.
- 1.3. Физико-химические основы получения нанопорошков, наноструктур и консолидированных наноматериалов. Основные методы получения наноматериалов. Получение нанопорошков. Метод Глейтера. Вклад советских ученых в совершенствование методов получения наноматериалов. Стабильность нанопорошков. Методы интенсивной пластической деформации. Технологии 3D-печати (3D-Printing),

Раздел 2.

- 2.1. Композиционные наноматериалы. Классификация композиционных материалов. Основные типы структур композиционных материалов. Характеристика наполнителей. Физические и химические свойства неорганических и органических композиционных материалов.
- 2.2. Механические свойства наноматериалов. Прочность, пластичность и другие параметры, определяющие механические свойства наноматериалов. Анизотропия механических свойств. Влияние морфологии, структуры наночастиц на механические свойства. Влияние наноструктур на механические свойства нанокомпозитов. Влияние ориентации анизотропных наночастиц на механические свойства нанокомпозитов.
- 2.3. Адгезия наноматериалов на различных поверхностях. Адгезионная прочность соединения «адгезив-субстрат». Факторы, влияющие на величину адгезионной прочности. Методы определения адгезии. Определение адгезии наночастиц путём моделирования. Адгезия пленок и наноструктурированных (нанокомпозитных) покрытий. Теории адгезии. Причины повышенной адгезии наночастиц. Влияние избытка поверхностной энергии на адгезионное взаимодействие наночастиц. Зависимость адгезии от морфологии наночастиц.

2 семестр.

Раздел 3.

- 3.1. Пористые наноматериалы. Номенклатура пор Международного союза по чистой и прикладной химии (1972 г.). Определение пористости различных видов пор. Пористые материалы различной природы. Нанопористый углерод. Молекулярные сита. Мезопористые мезоструктурированные материалы (МММ). Нанокомпозиты на основе молекулярных сит. Особенности механизма диффузии веществ в нанопористых материалах. Наноматериалы для суперконденсаторов.
- 3.2. Мембраны и мембранные процессы. Полимерные, металлические, керамические, композитные мембраны. Трековые фильтры. Наиболее перспективные области применения мембран. Нанофильтрация. Механизм нанофильтрации. Особенности переноса веществ через мембраны, имеющие наноразмерные поры. Капиллярнофильтрационный и диффузионный факторы переноса. Роль электростатического взаимодействия ионов разделяемого раствора с материалом мембраны. Современные типы нанофильтрационных мембран.
- 3.3. Диффузия по межфазным границам. Зернограничная диффузия. Особенности диффузионных процессов на межфазных границах. Модели зернограничной диффузии. Зернограничная диффузия в тонких пленках. Влияние структуры границ зерен на диффузию. Диффузия и дефекты структуры. Особенности зернограничной диффузии в нанокристаллических материалах Экспериментальные методы для определения параметров зернограничной диффузии.

Раздел 4.

- 4.1. Особенности магнитных свойств наноматериалов. Влияние размера частиц на магнитные свойства. Основные параметры, зависящие от размерного фактора. Изменение коэрцитивной силы с уменьшением размера магнитной частицы. Переход в суперпарамагнитное состояние. Особенности гистерезисных свойств мелких частиц. Магнитные свойства наночастиц оксидов железа различного размера и структуры. Особенности фундаментальных свойств магнетиков в тонкоплёночном состоянии. Роль поверхности и размерного фактора в формировании магнитной анизотропии. Магнитные жидкости.
- 4.2. Химия нанокластеров. Молекулярные лигандные кластеры. Безлигандные металлические кластеры. Общие тенденции изменения свойств кластеров в зависимости от нуклеарности. Особые точки на зависимостях от нуклеарности, отвечающие так называемым магическим числам. Аномалии реакционной способности кластеров в газовой фазе, соответствующие этим числам. Связь реакционной способности смешанных кластеров с их электронным строением и геометрией.
- 4.3. Наномащины и наноустройства. Ассемблеры и молекулярные машины. Компьютерные модели. Зондовый микроскоп как манипулятор атомами. Нанолитография. Конвертирование внешних воздействий (энергию химической реакции, световую, электрическую, тепловую энергию) в механическую энергию движения. Два типа молекулярных моторов: трансляционный и ротор. Синтез наноавтомобиля. Nanocar Race международные соревнования наноавтомобилей.

5. СООТВЕТСТВИЕ СОДЕРЖАНИЯ ТРЕБОВАНИЯМ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ДИСЦИПЛИНЫ

20	n e		Разде	ЛЫ	
№	В результате освоения дисциплины студент должен	1	2	3	4
	Знать:				
1	современные научные достижения и перспективные направления работ в области физических и химических свойств наноматериалов;	+	+	+	+
2	современные представления о физико-химических механизмах и процессах, протекающих при использовании наноматериалов;	+	+	+	+
3	физико-химические способы управления свойствами наноматериалов, модификации наноматериалов;	+	+	+	+
4	прогнозирование развития функциональных наноматериалов на основе их физических и химических свойств.	+	+	+	+
	Уметь:				
5	проводить анализ научно-технической информации, в области физических и химических свойств наноматериалов;	+	+	+	+
6	определять эффективные физико-химические методы создания новых функциональных наноматериалов с комплексом заданных свойств для конкретных областей применения;	+	+	+	+
7	применять теоретические знания физико-химических свойств современных и перспективных наноматериалов для решения исследовательских и прикладных задач, в том числе в междисциплинарных областях.	+	+	+	+
	Владеть:				
8	навыками работы с научно-технической, справочной литературой и электронными ресурсами, затрагивающими фундаментальные и практические аспекты создания современных наноматериалов;	+	+	+	+
9	способностью к критическому анализу и оценке современных научных достижений, выявлению проблем и формулированию подходов для решения исследовательских и практических задач в области нанотехнологии и наноматериалов.	+	+	+	+
10	методами работы с научно-технической, справочной литературой и электронно-библиотечными ресурсами по теоретическим и технологическим аспектам физико-химических свойств и химической технологии наноматериалов;	+	+	+	+

3.0	D.			Разде	ЛЫ	
№	В результате с	освоения дисциплины студент должен	1	2	3	4
Вр	баз данных по составу, структ функциональных и конструкцион	вания справочных литературных данных и компьютерных туре и физико-химическим свойствам основных типов ных наноматериалов. студент должен приобрести следующие универсальные ко	+ Омпетенции	+ и и индика	+	+
дос	Формируемые компетенции	Индикаторы достижения компетенций				
	Код и наименование УК	Код и наименование индикатора достижения УК				
12	УК-1. Способен осуществлять критический анализ проблемных	УК-1.2. Систематизирует информацию, полученную из разных источников, в соответствии с требованиями выполнения учебного задания;	+	+	+	+
13	УК-3. Способен организовывать и руководить работой команды,	УК-3.2. Подготавливает и представляет презентации планов и результатов собственной и командной деятельности.	+		+	+
14	УК-4. Способен применять современные коммуникативные технологии, в том числе на иностранном(ых) языке(ах), для академического и профессионального взаимодействия	, 1,	+	+	+	+
Вр		студент должен приобрести следующие общепрофессиона	льные ком	петенции і	и индикато	ры их
дос	стижения:	,			_	T
	Код и наименование ОПК	Код и наименование индикатора достижения ОПК				
15	ОПК-1. Способен ставить и решать инженерные и научнотехнические задачи в области получения и исследования	ОПК-1.3. Использует физико-химический подход для описания, анализа, теоретического и экспериментального исследования и моделирования процессов синтеза и исследования наноматериалов	+	+	+	+

70	n			Разде.	ТЫ	
№	Programme Agency (1997)		1	2	3	4
	наноматериалов и новых	ОПК-1.4. Использует прикладные программы и средства				
	междисциплинарных	автоматизированного проектирования при решении				
16	направлений с использованием	инженерных задач.	+	+	+	+
	естественнонаучных и					
	математических моделей					
	ОПК-4. Способен выполнять	ОПК-4.1. Составляет план научно-исследовательской				
17	исследования при решении	1 71	_	_	_	_
1 /	инженерных и научно-	последовательность экспериментальной работы,	1	1	ı	1
	технических задач, включая	обсуждения и анализа результатов;				
	планирование и постановку	ОПК-4.2. Формирует демонстрационный материал и				
18	сложного эксперимента,	представляет результаты своей исследовательской	+	+	_	_
10	критическую оценку и	деятельности на научных конференциях, во время	1	1	ı	1
	интерпретацию результатов	промежуточных и итоговых аттестаций.				
19	ОПК-5. Способен использовать	ОПК-5.1. Проводит патентный поиск в	+	+	+	+
1)	инструментарий формализации	профессиональной области;	Т	Т	T	T
	инженерных, научно-	ОПК-5.2. Определяет перечень ресурсов и программного				
	технических задач, прикладное	обеспечения для использования в профессиональной				
20	программное обеспечение для	деятельности с учетом требований информационной	+	+	+	+
	моделирования и проектирования	безопасности.				
	объектов, систем и процессов					
	ОПК-7. Способен разрабатывать	ОПК-7.1. Использует техническую и справочную				
	и актуализировать научно-					
21	техническую документацию в	исследовательской работы в области технологии и	+	+	+	+
	области получения	методов диагностики наноматериалов				
	наноматериалов					

6. ПРАКТИЧЕСКИЕ И ЛАБОРАТОРНЫЕ ЗАНЯТИЯ

6.1. Практические занятия Примерные темы практических занятий по дисциплине

1 семестр

№ раздела	Темы практических занятий	
1	Вклад отечественных ученых в развитие науки о наноматериалах и нанотехнологии	2
1	•	2
	1 11	4
1	Физикохимические основы получения нанопорошков и консолидированных наноматериалов	6
1	Интенсивная пластическая деформация	2
2	Свойства композиционных наноматериалов	4
2	Способы введения наночастиц в матрицы композиционных материалов	2
2	Влияние морфологии и ориентации наночастиц на свойства композиционных материалов	2
2		4
2	•	2
2	•	4
	*	I.
3	Пористые наноматериалы	4
3	Особенности механизма диффузии веществ в	2
3	Мембраны. Мембранный транспорт	4
3	Нанофильтрация. Особенности мембранного транспорта при нанофильтрации	2
3	Диффузия по межфазным границам. Зернограничная диффузия	5
4		4
4	Размерный эффект в магнитных свойствах наночастиц оксидов железа	3
4	Особенности химии нанокластеров	4
4	Аномалии реакционной способности кластеров	2
4	Наномащины и наноустройства	4
	дисциплины 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 4	Темы практических занятии

6.2. Лабораторные занятия

Лабораторный практикум по дисциплине «Физические и химические свойства наноматериалов и наносистем» Учебным планом не предусмотрен.

7. САМОСТОЯТЕЛЬНАЯ РАБОТА

Самостоятельная работа проводится с целью углубления знаний по дисциплине и предусматривает:

- регулярную проработку пройденного на лекциях и практических занятиях учебного материала;
- подготовку к контрольным работам по материалу лекционного курса;
- ознакомление и проработку рекомендованной литературы, работу с электроннобиблиотечными системами, включая переводы публикаций из научных журналов, цитируемых в базах Scopus, Web of Science, Chemical Abstracts, РИНЦ;
- изучение докладов ведущих российских и зарубежных ученых по наиболее актуальным направлениям развития науки о наноматериалах и нанотехнологии на сайте кафедры наноматериалов и нанотехнологии http://nano.muctr.ru/conf.
- посещение отраслевых выставок, семинаров и конференций;
- участие в научном семинаре кафедры наноматериалов и нанотехнологии РХТУ им.
 Д.И. Менделеева;
- подготовку к сдаче экзамена по дисциплине.

8. ПРИМЕРЫ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ КОНТРОЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Общая оценка за данную дисциплину складывается из оценки работы в семестре (максимально 60 баллов) и оценки, полученной на экзамене (максимально 40 балов). Оценка текущей работы обучающегося в семестре складывается из оценок за выполнение контрольных работ (до 40 баллов), подготовке научных докладов (до 10 баллов) и участия в кафедральных семинарах (до 10 баллов) по тематике дисциплины, максимально — 60 баллов.

При оценке научных докладов оценивается количество подготовленных докладов, качество докладов (глубина проработки темы, использование современных источников информации, в том числе зарубежных) и качество презентации доклада. Презентация докладов происходит на семинарских занятиях, причем остальные студенты задают вопросы докладчику и участвуют в обсуждении доклада. При оценке участия в кафедральных семинарах, где докладчиками выступают известные ученые в области науки о наноматериалах и нанотехнологии, учитывается активность студента на семинаре, выражающаяся в формулировании вопросов докладчику и участии в обсуждении доклада.

8.1. Примеры контрольных вопросов для текущего контроля освоения дисциплины 1 семестр (разделы 1 и 2)

- 1. К процессам мегапластической деформации не относится: 1) закалка из жидкого состояния, 2) равноканальное угловое прессование. 3) сдвиг под давлением, 4) накопительная прокатка.
- 2. Л.В. Радушкевич и В.М.Лукьянович в СССР в 1952 опубликовали результаты исследований углеродных нанотрубок нановолокон диаметром 100 нм с пустотелыми каналами, которые были получены в: 1) Rice University, 2) РХТУ

- (МХТИ) им. Д.И.Менделеева 3) МГУ им. М.В.Ломоносова, 4) Институте физической химии РАН.
- 3. Кто впервые сформулировал концепцию наноматериалов и ввел в научную литературу термин наноматериалы сначала как нанокристаллические материалы, потом наноструктурные, нанофазные, нанокомпозитные и т.д.? 1) Фейнман, 2). Дрекслер, 3) Глейтер, 4) Тананаев.
- 4. Фрагмент проводника или полупроводника, носители заряда (электроны или дырки) которого ограничены в пространстве по всем трём измерениям. 1) квантовая яма, 2) квантовая точка, 3) квантовая антиточка, 4) квантовый барьер.
- 5. Наибольшим пределом прочности и пределом упругости обладают: 1) стали; 2) полимеры; 3) титановые сплавы; 4) аморфные сплавы.
- 6. С увеличением деформации доля кристаллической фазы: 1) увеличивается; 2) уменьшается; 3) может как увеличиваться, так и уменьшаться; 4) не изменяется.
- 7. В СССР при создании диффузионных технологий изотопного обогащения урана и технологических операций ядерно-топливного цикла были впервые синтезированы наноразмерные металлические порошки. Их производство (УЭХК, г. Новоуральск) и успешное применение были отмечены Ленинской премией (И.К. Кикоин, И.Д. Морохов, В.Н. Лаповок и др.). В каком году? 1) 1958, 2) 1971, 3) 1981, 4) 1998.
- 8. Кто такой Фуллер, Ричард Бакминстер?: 1) первооткрыватель фуллеренов. 2) один из основателей нанотехнологии, 3) американский химик, 4) американский инженер, поэт и философ.
- 9. Почему квантовые точки называют искусственными атомами? 1) квантовая точка, как и атом, имеет ядро, 2) квантовая точка может вступать в химические реакции подобно атомам, 3) квантовая точка имеет размеры атома, 4) в квантовой точке движение ограничено в трех направлениях и энергетический спектр полностью дискретный, как в атоме.
- 10. Закон Петча-Холла (Холла-Петча)? 1) $\sigma_y = \sigma_0 + k/\sqrt{d}$, 2) $\Delta P = 2\sigma/r$, 3) $\Delta T_m = T_m T(d) = 6\sigma_{sl} T_m/(d \cdot \Delta H_f)$, 4) $\ln{(P_i/P_i)} = 2v_i \sigma/rRT$

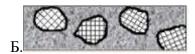
2 семестр (разделы 3 и 4)

- 1. Кто и в каком году обосновал Броуновское движение как Марковский процесс? 1) Колмогоров в 1931 году, 2) Марков в 1907 году, 3) Винер в 1925 году, 4) Бокштейн в 1959 году.
- Что такое диффузия? 1) это процесс переноса вещества, приводящий к возникновению градиента концентрации, реализующийся благодаря перемещениям (скачкам) отдельных частиц (атомов, молекул...) на расстояния большие по сравнению с межатомными. 2) это процесс переноса энергии, приводящий к выравниванию концентрации, реализующийся благодаря перемещениям (скачкам) отдельных частиц (атомов, молекул...) на расстояния большие по сравнению с межатомными, 3) это процесс переноса вещества, приводящий выравниванию К концентрации, реализующийся благодаря взаимодействию отдельных частиц (атомов, молекул...) на расстояния большие по сравнению с межатомными, 4) это процесс переноса вещества, приводящий к выравниванию концентрации, реализующийся благодаря перемещениям (скачкам) отдельных частиц (атомов, молекул...) на расстояния большие по сравнению с межатомными.
- 3. Присутствует ли корреляция в движении диффундирующих частиц во времени и по ансамблю (т. е. между собой)? 1) отсутствует, 2) присутствует, 3) зависит от времени, 4) зависит от вида частиц.

- 4. Метод, который обладает высокой чувствительностью, позволяет визуализировать диффузии изотопа изучать самодиффузию? радиография, ПУТЬ И авторадиография, 3) флуоресцентный метод, 4) хроматография
- Кто опубликовал свои наблюдения зигзагообразного движения частиц суспензии? 5. 1) Перрен, 2) Смолуховский, 3) Эйнштейн, 4) Броун.
- 6. Области, в которых все атомные магнитные моменты спонтанно ориентированы это: 1) магнитные границы, 2) магнитные домены, 3) доменные границы, 4) ферримагнитные области.
- 7. Что такое молекулярный ассемблер (описан в книге Дрекслера)? 1) мельчайшая частица атома, 2) молекулярная машина, которая запрограммирована строить молекулярную структуру из более простых химических блоков, 3) субклеточная частица, 4) коллоидный ансамбль ПАВ.
- Во всех уравнениях диффузии для бесконечных образцов расстояние зависит от времени как:
 - 1) $\bar{r}^2 \sim t$;
 - 2) **r̄∼t**;

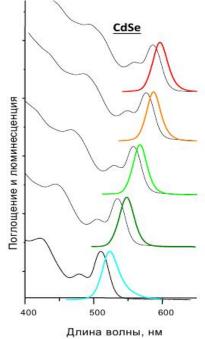
 - 3) $\bar{r}^3 \sim t$; 4) $\bar{r}^2 \sim t^2$.
- 9. В отличие от ферромагнетиков суперпарамагнетики и парамегнетики: 1) Не намагничиваются; 2) Их намагниченность меньше единицы; 3) Не достигают магнитного насыщения; 4) Не имеют петлю гистерезиса.
- 10. В твердых телах диффузия главным образом зависит от: 1) давления; 2) температуры; 3) материала; 4) механических воздействий на тело.

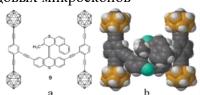
8.2. Примеры контрольных вопросов для итогового контроля освоения дисциплины (Экзамен)


Максимальная оценка 40 баллов за экзамен.

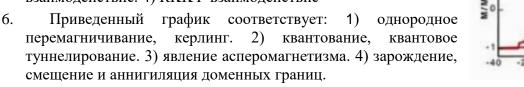
1 семестр (разделы 1 и 2)

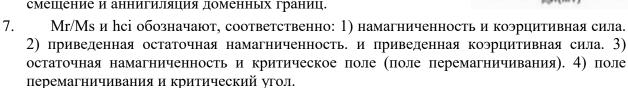
- За что была присуждена Нобелевская премия Ж.И.Алферову? 1) за основы 1. супрамолекулярной химии, 2) за книгу «Машины создания», 3).за разработку полупроводниковых гетероструктур, 4) за создание туннельного микроскопа
- 2. Кто получил Нобелевскую премию по физике 2010 г. за эксперименты с графеном? 1) Биннинг и Рорер, 2) Андрей Гейм и Константин Новосёлов, 3) Жорес Алферов 4) Крото и Смолли.
- Какая из характеристик соответствует кристаллическому состоянию вещества? А) Структурная изотропия. Б) Низкая термодинамическая стабильность. В) Низкие модули упругости. Г) Трансляционная симметрия.
- Какая из характеристик соответствует аморфному состоянию вещества? А) Дислокационная мода деформации. Деформационное упрочнение. Б) Ближний атомный порядок. В) Высокие модули упругости. Г) Высокая термодинамическая стабильность.
- Метод Г. Глейтера: 1) пиролиз углеводородов, 2) золь-гель метод, 3) гидролиз 5. алкоксидов, 4) газофазное осаждение и компактирование.
- 6. Литография методом локального анодного окисления основан на: 1) облучении тонкой пленки, осажденной на подложку; 2) подключении электрического напряжения между наконечником СЗМ и поверхностью; 3) пропускании через ультратонкий образец пучка электронов; 4) нет правильного ответа.


- 7. Если деформировать титан в камере Бриджмена, что происходит с его свойствами? 1) прочность растет; коррозионные свойства не меняются, а при больших деформациях они падают; 2) прочность растет; коррозионные свойства уменьшаются, а при больших деформациях они увеличиваются; 3) прочность растет; коррозионные свойства уменьшаются, а при больших деформациях они еще больше уменьшаются; 4) прочность уменьшается; коррозионные свойства не меняются, а при больших деформациях они падают.
- 8. Повышение проводящей способности нанотрубок TiO2 в присутствии водорода связано: 1) с восстановлением оксида титана, 2) с удалением сорбированного кислорода из межтрубочного пространства, 3) с эффектом сверхпроводимости, 4). с образованием активных форм водорода при сорбции на трубках.
- 9. Полной кристаллизации при закалке из жидкого состояния соответствует структура изображённая на рисунке: 1) A; 2) Б; 3) В сосуществуют обе структуры; 4) правильного ответа нет.



- 10. На рисунке приведены спектры поглощения и люминесценции квантовых точек
 - CdSe. В зависимости от чего спектры смещаются более длинноволновую область электромагнитного излучения? 1) В зависимости от размера квантовых точек, с увеличением размера спектр смещается вправо длинноволновая область); 2) В зависимости от концентрации квантовых точек в исследуемой суспензии, с увеличением концентрации спектр сдвигается в более длинноволновую область; 3) В зависимости от растворителя, в котором содержатся данные квантовые точки; 4) В зависимости от размера квантовых точек, с уменьшением размера спектр смещается вправо (более длинноволновая область).


2 семестр (разделы 3 и 4)


- 1. Что такое «Молекулярные сита»? 1) сорбенты, избирательно поглощающие вещества, молекулы которых не превышают определённых размеров. 2) молекулярный фильтр в лазерных устройствах на молекулярных кристаллах, 3) молекулярная решетка для подготовки образцов для электронной микроскопии, 4) стандартный образец пиролитического графита для калибровки зондовых микроскопов
- 2. Где была синтезирована наномашина (см.рис.) ?
 - 1) Швейцарский филиал IBM, 2) Университет Токио,
 - 3) Питсбургский университет, 4) Райс (Rice) университет.
- 3. Какую наибольшую удельную поверхность Metal-organic framework structures, удалось достичь

- Dr. Shuguang Deng (США) в своих работах, которые он представлял на семинаре кафедры наноматериалов и нанотехнологии РХТУ им. Д.И.Менделеева (видеозапись семинара представлена на сайте семинаров кафедры наноматериалов и нанотехнологии), м²/см³? 1) 100, 2) 300, 3) 1000, 4) 5000.
- 4. Обычно именно этот эффект определяет дальний магнитный порядок. Играет большую роль в ансамблях наночастиц, тесно соприкасающихся друг с другом: 1) обменное взаимодействие. 2) суперобменное взаимодействие. 3) диполь-дипольное взаимодействие. 4) RKKY-взаимодействие
- 5. Когда матрица является изолятором, это взаимодействие может реализовываться через промежуточные атомы или ионы (например, кислород), зависит от структуры и природы матрицы и сил связи на границе раздела частица матрица. Какое это

взаимодействие? 1) обменное взаимодействие. 2) суперобменное взаимодействие. 3) диполь-дипольное взаимодействие. 4) RKKY-взаимодействие

- 8. Основной механизм самодиффузии и диффузии в твердых растворах 1) примесный междоузельный, 2) вакансионный, 3) обменный, 4) циклический
- 9. Как изменяется коэрцитивная сила при уменьшении размера частицы: 1) сначала увеличивается, затем уменьшается; 2) сначала уменьшается, затем увеличивается; 3) не изменяется; 4) изменение коэрцитивной силы не связано с изменением размера частицы.
- 10. Какой из перечисленных факторов является причиной того, что диффузионный перенос по границам зёрен протекает значительно быстрее? 1) высокая концентрации дефектов в зоне контакта, 2) малая концентрация дефектов в зоне контакта, 3) температурный фактор, 4) правильного ответа нет.

Фонд оценочных средств приведен в виде отдельного документа, являющегося неотъемлемой частью основной образовательной программы.

8.3. Структура и примеры билетов для экзамена

Экзамен по дисциплине «Физические и химические свойства наноматериалов и наносистем» проводится в 1 и 2 семестрах и включает контрольные вопросы по разделам 1, 2 и 3, 4 учебной программы дисциплины соответственно. Билет для экзамена состоит из 4 вопросов, относящихся к указанным разделам. Ответы на вопросы экзамена оцениваются из максимальной оценки 40 баллов по 10 баллов за каждый вопрос.

«Утверждаю»	Министерство науки и высшего образования РФ	
	Российский химико-технологический университет	
Руководитель	имени Д.И. Менделеева	
магистерской программы	Кафедра наноматериалов и нанотехнологии	
	28.04.03 Наноматериалы и нанотехнологии	
	Магистерская программа – «Химическая технология	
« <u>_</u> »20г. наноматериалов»		
	Физические и химические свойства наноматериалов и	
	наносистем	

Билет № 1

- 1. Что такое «Молекулярные сита»? 1) сорбенты, избирательно поглощающие вещества, молекулы которых не превышают определённых размеров. 2) молекулярный фильтр в лазерных устройствах на молекулярных кристаллах, 3) молекулярная решетка для подготовки образцов для электронной микроскопии; 4) стандартный образец пиролитического графита для калибровки зондовых микроскопов
- 2. Какую наибольшую удельную поверхность Metal-organic framework structures, удалось достичь Dr. Shuguang Deng (США) в своих работах, которые он представлял на семинаре кафедры наноматериалов и нанотехнологии РХТУ им. Д.И.Менделеева (видеозапись семинара представлена на сайте семинаров кафедры наноматериалов и нанотехнологии), м²/см³? 1) 100, 2) 300, 3) 1000, 4) 5000.
- 3. Основной механизм самодиффузии и диффузии в твердых растворах 1) примесный междоузельный, 2) вакансионный, 3) обменный, 4) циклический
- 4. Как изменяется коэрцитивная сила при уменьшении размера частицы: 1) сначала увеличивается, затем уменьшается; 2) сначала уменьшается, затем увеличивается; 3) не изменяется; 4) изменение коэрцитивной силы не связано с изменением размера частицы.

9. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

9.1. Рекомендуемая литература

А. Основная литература

- 1. Юртов Е.В. Наноматериалы и наноструктуры. М.: РХТУ им. Д.И. Менделеева 2010, т.1 148 с., т.2 112 с.
- 2. Юртов Е.В., Королева М.Ю. Процессы получения наночастиц и наноматериалов. М.: РХТУ им. Д.И.Менделеева 2010, 152 с.
 - 3. Ролдугин В.И. Физикохимия поверхности, ИД Интеллект, 2011 г., 568 с.

Б. Дополнительная литература

- 1. Шабанова, Н. А. Саркисов П. Д. Золь-гель технологии. Нанодисперсный кремнезем. М.: БИНОМ. Лаборатория знаний, 2012. 328 с.
- 2. Шабанова Н.А., Попов В.В., Саркисов П.Д. Химия и технология нанодисперсных оксидов. Учебное пособие. М.: ИКЦ «Академкнига», 2006.-309 с.
- 3. Рыжонков Д. И., Лёвина В. В., Дзидзигури Э. Л. Наноматериалы: учебное пособие /. 2-е изд. М.: БИНОМ. Лаборатория знаний, 2010. 365 с.
- 4. Старостин, В. В. Материалы и методы нанотехнологий: учебное пособие. 2-е изд. М.: БИНОМ. Лаборатория знаний, 2010. 431 с.

- 5. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М.: Физматлит. 2004. 410 с.
- 6. Генералов, М. Б. Основные процессы криохимической нанотехнологии. Теория и методы расчета: учебное пособие СПб. Профессия, 2010. 348 с.
- 7. Аверина Ю.М., Субчева Е.Н., Юртов Е.В., Зверева О.В. Композиционные материалы. Классификация, особенности свойств, применение и технологии получения. М.: РХТУ им. Д. И. Менделеева, 2017, 128 с.
- 8. Мурадова А.Г., Матвеева А.Г., Юртов Е.В., Бокштейн Б.С. Объемная и зернограничная диффузия. Методические указания по выполнению лабораторной работы, М.: РХТУ им. Д.И. Менделеева, 2018, 28 с.

9.2. Рекомендуемые источники научно-технической информации

- Раздаточный иллюстративный материал к лекциям.
- Презентации к лекциям.
- Методические рекомендации по выполнению лабораторных работ.

Научно-технические журналы:

- 1. Реферативный журнал «Химия» (РЖХ), ISSN 0486-2325
- 2. Журнал «Российские нанотехнологии», ISSN 1992-7223
- 3. Журнал «Наноиндустрия», ISSN 1993-8578
- 4. Журнал «Коллоидный журнал», ISSN 0023-2912
- 5. Журнал «Журнал неорганической химии», ISSN 0044-457X
- 6. Журнал «Журнал физической химии», ISSN 0044-4537
- 7. Журнал «Мембраны и мембранные технологии» ISSN 2218-1172
- 8. Журнал «Деформация и разрушение материалов»
- 9. Журнал «Химическая технология», ISSN 1684-5811
- 10. «Успехи в химии и химической технологиии», ISSN 1506-2017
- 11. Nature Nanotechnology, ISSN 1748-3387, EISSN 1748-3395.
- 12. ACS Applied Materials & Interfaces, Print Edition ISSN: 1944-8244, Web Edition ISSN: 1944-8252.
 - 13. ACS Nano, Print Edition ISSN 1936-0851, Web Edition ISSN 1936-086X
 - 14. Nano Letters, Print Edition ISSN: 1530-6984, Web Edition ISSN: 1530-6992
 - 15. Nano Today, ISSN 1748-0132.
- 16. Chemistry of Materials, Print Edition ISSN: 0897-4756, Web Edition ISSN: 1520-5002
- 17. Colloids and Surfaces A: Physicochemical and Engineering Aspects, ISSN 0927-7757
 - 18. Langmuir, Print Edition ISSN: 0743-7463, Web Edition ISSN: 1520-5827
- 19. Политематические базы данных (БД): США: CAPLUS; COMPENDEX; Великобритания: INSPEC; Франция: PASCAL.

Ресурсы информационно-телекоммуникационной сети Интернет:

- 1. Pecypcы ELSEVIER: <u>www.sciencedirect.com</u>.
- 2. Pecypcы ACS: http://pubs.acs.org
- 3. Pecypcы Springer: http://www.springer.com/gp/products/journals
- 4. Pecypcы RCS: http://pubs.rsc.org/en/journals?key=title&value=all
- 5. Pecypcы Wiley: http://onlinelibrary.wiley.com/

9.3. Средства обеспечения освоения дисциплины

Для реализации дисциплины подготовлены следующие средства обеспечения освоения дисциплины:

- компьютерные презентации интерактивных лекций и семинаров 8, (общее число слайдов более 100);
- доклады ведущих российских и зарубежных ученых по наиболее актуальным направлениям развития науки о наноматериалах и нанотехнологии на сайте кафедры наноматериалов и нанотехнологии http://nano.muctr.ru/conf более 30;
- банк тестовых заданий для текущего контроля освоения дисциплины (общее число вопросов более 50);
- банк тестовых заданий для итогового контроля освоения дисциплины (общее число вопросов более 100).

10. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ В ОБРАЗОВАТЕЛЬНОМ ПРОЦЕССЕ

Информационную поддержку изучения дисциплины осуществляет Информационно-библиотечный центр (ИБЦ) РХТУ им. Д.И. Менделеева, который обеспечивает обучающихся основной учебной, учебно-методической и научной литературой, необходимой для организации образовательного процесса по дисциплине. Общий объем многоотраслевого фонда ИБЦ на 01.01.2021 составляет 1 716 243 экз.

Фонд ИБЦ располагает учебной, учебно-методической и научно-технической литературой в форме печатных и электронных изданий, а также включает официальные, справочно-библиографические, специализированные отечественные и зарубежные периодические и информационные издания. ИБЦ обеспечивает доступ к профессиональным базам данных, информационным, справочным и поисковым системам.

Каждый обучающийся обеспечен свободным доступом из любой точки, в которой имеется доступ к сети Интернет и к электронно-библиотечной системе (ЭБС) Университета, которая содержит различные издания по основным изучаемым дисциплинам и сформирована по согласованию с правообладателями учебной и учебнометодической литературы.

Для более полного и оперативного справочно-библиографического и информационного обслуживания в ИБЦ реализована технология Электронной доставки документов.

Полный перечень электронных информационных ресурсов, используемых в процессе обучения, представлен в основной образовательной программе.

11. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

В соответствии с учебным планом занятия по дисциплине «Физические и химические свойства наноматериалов и наносистем» проводятся в форме лекций, практических занятий и самостоятельной работы обучающегося.

11.1. Оборудование, необходимое в образовательном процессе:

Лекционная учебная аудитория, оборудованная электронными средствами демонстрации (компьютер со средствами звуковоспроизведения, проектор, экран) и учебной мебелью.

Библиотека, имеющая рабочие места, оснащенные компьютерами с доступом к базам данных и выходом в Интернет.

11.2. Учебно-наглядные пособия:

Иллюстрации к разделам лекционного курса и практическим занятиям; образцы наноматериалов и изделий и продуктов с использованием наноматериалов.

11.3. Компьютеры, информационно-телекоммуникационные сети, аппаратно-программные и аудиовизуальные средства:

Персональные компьютеры, укомплектованные проигрывателями CD и DVD, принтерами и программными средствами; проекторы и экраны; цифровые камеры; копировальные аппараты; локальная сеть с выходом в Интернет.

11.4. Печатные и электронные образовательные и информационные ресурсы:

Информационно-методические материалы: учебные пособия по дисциплине; раздаточный материал к разделам лекционного курса; рекламные проспекты с основными видами и характеристиками наноматериалов и изделий из них.

Электронные образовательные ресурсы: электронные презентации к разделам лекционного курса; учебно-методические разработки в электронном виде; справочные материалы в печатном и электронном виде по составу и свойствам наноматериалов; кафедральная библиотека электронных и печатных изданий.

11.5. Перечень лицензионного программного обеспечения:

№ п.п.	Наименование программного	Реквизиты договора поставки	Количество лицензий	Срок окончания действия лицензии
	продукта			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1.	Calculate Linux Desktop	Свободно распространяемое ПО	Не ограниченно	Бессрочно
2.	LibreOffice	Свободно распространяемое ПО	Не ограниченно	Бессрочно
3.	ABBYY FineReader	Свободно распространяемое ПО	Не ограниченно	Бессрочно
4.	7-Zip	Свободно распространяемое ПО	Не ограниченно	Бессрочно
5.	Google Chrome	Свободно распространяемое ПО	Не ограниченно	Бессрочно
6.	VLC Media Player	Свободно распространяемое ПО	Не ограниченно	Бессрочно
7.	Discord	Свободно распространяемое ПО	Не ограниченно	Бессрочно
8.	Autodesk AutoCAD	Свободно распространяемое ПО	Не ограниченно	Бессрочно
9.	IntellIJIDEA	Свободно распространяемое ПО	Не ограниченно	Бессрочно
10.	FreeCAD	Свободно распространяемое ПО	Не ограниченно	Бессрочно
11.	SMath Studio	Свободно распространяемое ПО	Не ограниченно	Бессрочно

12.	Corel Academic Site Standard	Контракт № 90- 133ЭА/2021 от 07.09.2021	Лицензия для активации на рабочих станциях, покрывает все рабочие места в университете	12 месяцев (ежегодное продление подписки с правом перехода на обновлённую версию продукта)
13.	Kaspersky Endpoint Security для бизнеса – Стандартный Russian Edition.	Контракт № 90- 133ЭА/2021 от 07.09.2021	500 лицензий	12 месяцев (ежегодное продление подписки с правом перехода на обновлённую версию продукта)
14.	GIMP	Свободно распространяемое ПО	Не ограниченно	Бессрочно
15.	OBS (Open Broadcaster Software) Studio	Свободно распространяемое ПО	Не ограниченно	Бессрочно

12. ТРЕБОВАНИЯ К ОЦЕНКЕ КАЧЕСТВА ОСВОЕНИЯ ПРОГРАММЫ

Наименование	Основные показатели оценки	Формы и методы
разделов		контроля и оценки
1 Семестр.	Знает:	Семестр 1. Оценка
Раздел 1.	– современные научные достижения и	за контрольную
	перспективные направления работ в	работу № 1.
	области физических и химических	Оценка за научные
	свойств наноматериалов;	доклады
	- современные представления о физико-	Оценка за участие в
	химических механизмах и процессах,	кафедральных
	протекающих при использовании	семинарах
	наноматериалов;	Оценка на экзамене.
	- физико-химические способы управления	
	свойствами наноматериалов,	
	модификации наноматериалов;	
	 прогнозирование развития 	
	функциональных наноматериалов на	
	основе их физических и химических	
	свойств.	
	Умеет:	
	– проводить анализ научно-технической	
	информации, в области физических и	
	химических свойств наноматериалов;	
	– определять эффективные физико-	
	химические методы создания новых	
	функциональных наноматериалов с	
	комплексом заданных свойств для	
	конкретных областей применения;	
	 применять теоретические знания 	
	физико-химических свойств	
	современных и перспективных	

Наименование разделов	Основные показатели оценки	Формы и методы контроля и оценки
разделов	наноматериалов для решения исследовательских и прикладных задач, в том числе в междисциплинарных областях. Владеет: - навыками работы с научно-технической, справочной литературой и электронными ресурсами, затрагивающими фундаментальные и практические аспекты создания современных наноматериалов; - способностью к критическому анализу и оценке современных научных достижений, выявлению проблем и формулированию подходов для решения исследовательских и практических задач в области нанотехнологии и наноматериалов. - методами работы с научно-технической, справочной литературой и электроннобиблиотечными ресурсами по теоретическим и технологическим аспектам физико-химических свойств и химической технологии наноматериалов; - навыками нахождения и использования справочных литературных данных и компьютерных баз данных по составу, структуре и физико-химическим свойствам основных типов	контроля и оценки
	функциональных и конструкционных наноматериалов.	
1 Семестр. Раздел 2.	Знает: - современные научные достижения и перспективные направления работ в области физических и химических свойств наноматериалов; - современные представления о физико-химических механизмах и процессах, протекающих при использовании наноматериалов; - физико-химические способы управления свойствами наноматериалов, модификации наноматериалов; - прогнозирование развития функциональных наноматериалов на основе их физических и химических свойств. Умеет:	Семестр 1. Оценка за контрольную работу № 2. Оценка за научные доклады Оценка за участие в кафедральных семинарах Оценка на экзамене.

Наименование разделов	Основные показатели оценки	Формы и методы контроля и оценки
	 проводить анализ научно-технической информации, в области физических и химических свойств наноматериалов; определять эффективные физико-химические методы создания новых функциональных наноматериалов с комплексом заданных свойств для конкретных областей применения; 	
	 применять теоретические знания физико-химических свойств современных и перспективных наноматериалов для решения исследовательских и прикладных задач, в том числе в междисциплинарных областях. Владеет: 	
	 навыками работы с научно-технической, справочной литературой и электронными ресурсами, затрагивающими фундаментальные и практические аспекты создания современных наноматериалов; способностью к критическому анализу и 	
	оценке современных научных достижений, выявлению проблем и формулированию подходов для решения исследовательских и практических задач в области нанотехнологии и наноматериалов.	
	 методами работы с научно-технической, справочной литературой и электронно-библиотечными ресурсами по теоретическим и технологическим аспектам физико-химических свойств и химической технологии наноматериалов; 	
	 навыками нахождения и использования справочных литературных данных и компьютерных баз данных по составу, структуре и физико-химическим свойствам основных типов функциональных и конструкционных наноматериалов. 	
2 Семестр. Раздел 3.	Знает: - современные научные достижения и перспективные направления работ в области физических и химических свойств наноматериалов; - современные представления о физико-	Семестр 2. Оценка за контрольную работу № 1. Оценка за научные доклады Оценка за участие в

Наименование разделов	Основные показатели оценки	Формы и методы контроля и оценки
	химических механизмах и процессах, протекающих при использовании	кафедральных семинарах
	наноматериалов;	Оценка на экзамене.
	 физико-химические способы управления свойствами наноматериалов, модификации наноматериалов; 	
	 прогнозирование развития функциональных наноматериалов на основе их физических и химических свойств. Умеет: 	
	 проводить анализ научно-технической информации, в области физических и химических свойств наноматериалов; 	
	 определять эффективные физико- химические методы создания новых функциональных наноматериалов с комплексом заданных свойств для конкретных областей применения; 	
	 применять теоретические знания физико-химических свойств современных и перспективных наноматериалов для решения исследовательских и прикладных задач, в том числе в междисциплинарных областях. Владеет: 	
	 навыками работы с научно-технической, справочной литературой и электронными ресурсами, затрагивающими фундаментальные и практические аспекты создания современных наноматериалов; 	
	 способностью к критическому анализу и оценке современных научных достижений, выявлению проблем и формулированию подходов для решения исследовательских и практических задач в области нанотехнологии и наноматериалов. 	
	 методами работы с научно-технической, справочной литературой и электронно-библиотечными ресурсами по теоретическим и технологическим аспектам физико-химических свойств и химической технологии наноматериалов; 	
	 навыками нахождения и использования справочных литературных данных и 	

Наименование разделов	Основные показатели оценки	Формы и методы контроля и оценки
,,	компьютерных баз данных по составу, структуре и физико-химическим свойствам основных типов функциональных и конструкционных наноматериалов.	
2 Семестр.	Знает:	Семестр 2. Оценка
Раздел 4.	 современные научные достижения и перспективные направления работ в области физических и химических свойств наноматериалов; современные представления о физикохимических механизмах и процессах, протекающих при использовании 	за контрольную работу № 2. Оценка за научные доклады Оценка за участие в кафедральных семинарах
	наноматериалов; - физико-химические способы управления свойствами наноматериалов,	Оценка на экзамене.
	модификации наноматериалов; — прогнозирование развития функциональных наноматериалов на основе их физических и химических свойств. Умеет:	
	 проводить анализ научно-технической информации, в области физических и химических свойств наноматериалов; 	
	определять эффективные физико- химические методы создания новых функциональных наноматериалов с комплексом заданных свойств для конкретных областей применения;	
	- применять теоретические знания физико-химических свойств современных и перспективных наноматериалов для решения исследовательских и прикладных задач, в том числе в междисциплинарных областях. Владеет:	
	 навыками работы с научно-технической, справочной литературой и электронными ресурсами, затрагивающими фундаментальные и 	
	практические аспекты создания современных наноматериалов; - способностью к критическому анализу и оценке современных научных достижений, выявлению проблем и формулированию подходов для решения исследовательских и практических задач	

Наименование разделов	Основные показатели оценки	Формы и методы контроля и оценки
	в области нанотехнологии и наноматериалов. - методами работы с научно-технической, справочной литературой и электроннобиблиотечными ресурсами по теоретическим и технологическим аспектам физико-химических свойств и химической технологии наноматериалов; - навыками нахождения и использования справочных литературных данных и компьютерных баз данных по составу, структуре и физико-химическим свойствам основных типов функциональных и конструкционных наноматериалов.	

13. ОСОБЕННОСТИ ОРГАНИЗАЦИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ДЛЯ ИНВАЛИДОВ И ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

Обучение инвалидов и лиц с ограниченными возможностями здоровья осуществляется в соответствии с:

- Порядком организации и осуществления образовательной деятельности по образовательным программам – программам бакалавриата, программам специалитета, программам магистратуры (Приказ Минобрнауки РФ от 05.04.2017 № 301);
- Положением о порядке организации и осуществления образовательной деятельности по образовательным программам высшего образования программ бакалавриата, программ специалитета, программ магистратуры в РХТУ им. Д.И. Менделеева, принятым решением Ученого совета РХТУ им. Д.И. Менделеева от 30.10.2019, протокол № 3, введенным в действие приказом ректора РХТУ им. Д.И. Менделеева от 14.11.2019 № 646A;
- Методическими рекомендациями по организации образовательного процесса для обучения инвалидов и лиц с ограниченными возможностями здоровья в образовательных организациях высшего образования, в том числе оснащенности образовательного процесса (утверждены заместителем Министра образования и науки РФ А.А. Климовым от 08.04.2014 № АК-44/05вн).

Дополнения и изменения к рабочей программе дисциплины «Физические и химические свойства наноматериалов и наносистем» основной образовательной программы

28.04.03 «Наноматериалы»

код и наименование направления подготовки (специальности)

«Химическая технология наноматериалов»

наименование ООП

Форма обучения: очная

Номер изменения/ дополнения	Содержание дополнения/изменения	Основание внесения изменения/дополнения
1.		протокол заседания Ученого совета №ототот
		протокол заседания Ученого совета № от «» 20г.
		протокол заседания Ученого совета №ототот
		протокол заседания Ученого совета № от от
		протокол заседания Ученого совета № от от